ALPHA
 CBW-H / CBW-V
 ALUMINIUM HOUSED COMPACT HARMONIC FILTER RESISTOR IP50 / IP65

The CBW is a Water Cooled Resistor. It combines the advantage of water cooling with the high pulse load ability of the traditional aluminum housed Alpha resistors. The CBW can easily be fitted into compact constructions. It is possible to stack several resistors close without distance when resistor banks are required.

The steady state power range from 1.7 kW to 6.7 kW / component (depending on the cooling). Danotherm has developed Thermal models for all resistor types and resistor values. By using these models, Danotherm is able to predict the temperature rises of the resistor wire and the surface for all possible load situations.

Danotherm offer the assistance to customers to find the optimal solution for any application.

CBW resistors are optionally available with connection box in different design for different cable sizes and from IP50 to IP65.

Applications

The water cooled resistor CBW is very well suited as a harmonic filter resistor where continuous power dissipation is required. For other applications like LVRT (Low Voltage Ride Through) for wind turbines Danotherm refer to seperate brochure for CBT/CBS - model.

Construction

The resistor elements for high resistance types are wire wound on mica support sheets. Lower resistance elements are made with helix wound wire elements. The outer housing is an aluminium profile insulated with micanite sheets on all inner surfaces. The resistor elements are fixed symmetrical in the profile by ceramic insulators. This ensures a symmetric expansion of the resistors and a maximum stability to high load impulses. The aluminium profile with the fixed resistor element is filled with quarts sand. This ensures a minimum change of the resistor surface temperature even if the resistor element reaches its maximum temperature during a pulse load.
The standard cables are 300 mm PTFE, style depending on rated voltage.

Water Cooling

Water cooling is via two extruded holes/tubes along the outer edges of the profile and heat transfer via the profile.
This ensures a simple water system and that the resistors are stackable. The centre of the resistor reaches a minor temperature increase at steady state load. If this cannot be tolerated the surface can be insulated.

Resistance Value Range
Please see table 1.

Mounting

It is recommended to mount the resistors in a vertical position with the in- and outlet at the top side to prevent air bubbles to be trapped. When the channels are in parallel the outlets should be upwards. If mounted in other direction precaution must be taken to avoid air bubbles in the cooling tubes.

Cooling liquid flow

The needed cooling liquid flow depends on the cooling liquid used and the dissipated power that the liquid needs to absorb. The formula for water flow is given by:

$$
Q=\frac{P \cdot 860}{\Delta T \cdot 0,85}
$$

Where
Q is flow in litres per hour
P is power in kW
$\Delta \mathrm{T}$ is difference in temperature between inlet and outlet
0,85 takes into account that not all water is effectively in contact with the cooling tubes.

If water $/ g l y c o l ~ 60 \% / 40 \%$ is used then the outcome needs to be multiplied by a factor of 1,5 .

General Specifications		
Temperature Coefficient	$< \pm 100 \mathrm{ppm}$	
Dielectric strength:	Standard	3500 VAC @ 1 minute
	On demand	6000 VAC @ 1 minute
Working Voltage	Standard	1000 VAC; 1400VDC
Isolation Resistance:	$>20 \mathrm{M} \Omega$	
Temperature of cooling water	$0^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$	
Temperature of cooling water-glycol	$0^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$	
Pressure:	Working: 6 bar; Test: 10 bar	
Environmental	$-40^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}$	
De-rating depending on water inlet temp.:	Linear: $20^{\circ} \mathrm{C}=$ Pn to $50^{\circ} \mathrm{C}=0,75^{*}$ Pn	
Thermo watch (optional)	$30^{\circ} \mathrm{C} / 160^{\circ} \mathrm{C} / 180^{\circ} \mathrm{C} / 200^{\circ} \mathrm{C}, 2 \mathrm{~A}, 250 \mathrm{VAC} \mathrm{NC}$	
PT 100 (optional)	2 Wire $/ 3 \mathrm{Wire} ;$ With $/$ Without Shield; Cable 300 mm	

CBW-C(H) (T)	min. Ohm value $[\mathrm{m} \Omega]$	max. Ohm value $[\Omega]$
CBW 210	40	2500
CBW 260	60	3500
CBW 330	90	5000
CBW 400	120	7000
CBW 460	150	8000
CBW 560	190	120
CBW 660	230	150
CBW 760	280	160

flow 1/h	ΔT water					Δ T water/glycol 60/40				
	10	15	20	30	40	10	15	20	30	40
7kW	708	472	354	236	177	1062	708	531	354	266
6kW	607	405	304	202	152	911	607	455	304	228
5 kW	506	337	253	169	127	759	506	379	253	190
4kW	405	270	202	135	101	607	405	304	202	152
3kW	304	202	152	101	76	455	304	228	152	114
2kW	202	135	101	68	51	304	202	152	101	76
1kW	101	68	51	34	25	152	101	76	51	38

Table 2

Maximum power dissipation

The maximum continuous power depends on the absolute value of the water inlet temperature and also on the increase of the water temperature which is directly dependent of the water flow. Table 3 shows the maximum continuous power at given water inlet temperatures and different $\Delta \mathrm{T}$. Graphs 1,2 and 3 show the continuous power values at water inlet temperature of $20^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ and all $\Delta \mathrm{T}$ between 10 and $40^{\circ} \mathrm{C}$. All values are based on the thermal model of the resistors as shown below.

CBW-C(H) (T)	max. surface temp.	maximum power at water inlet $\mathrm{T}=20^{\circ} \mathrm{C}$ [W]			maximum power at water inlet$\mathrm{T}=40^{\circ} \mathrm{C} \quad[\mathrm{~W}]$			maximum power at water inlet$\mathrm{T}=50^{\circ} \mathrm{C} \quad[\mathrm{~W}]$		
		$\Delta \mathrm{T}$ water [K]			Δ T water [K]			Δ T water [K]		
		10	20	40	10	20	40	10	20	40
CBW 210	160	1750	1630	1380	1480	1360	1110	1350	1220	980
CBW 260	170	2330	2170	1870	2000	1840	1540	1830	1680	1370
CBW 330	170	2950	2750	2370	2530	2330	1950	2320	2120	1740
CBW 400	170	3560	3330	2860	3060	2820	2350	2800	2570	2100
CBW 460	170	4090	3820	3280	3510	3240	2700	3220	2950	2410
CBW 560	170	4960	4630	3980	4260	3930	3270	3900	3580	2920
CBW 660	170	5830	5450	4670	5000	4620	3840	4590	4200	3430
CBW 760	170	6700	6250	5360	5750	5300	4410	5270	4820	3930

Table 3
water inlet $\mathrm{T}=20^{\circ} \mathrm{C}$

water inlet $\mathrm{T}=40^{\circ} \mathrm{C}$

Thermal model

Pressure drop

The pressure drop depends strongly on the used water nipples. Many customers use their own water nipples so it is difficult to give standard values. For resistor CBW460 with SW22x45,5 and a flow of 120 litres per hour the pressure drop is 55 mBar per channel, 110 mBar in total for 2 cooling tubes in series.

Horizontal mounting

Type	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{W} \\ & \mathrm{Kg} \end{aligned}$	Type	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{W} \\ & \mathrm{Kg} \end{aligned}$
CBW-H210 C (H) (T)	210	110	6.4	CBW-H 560 C H (T)	560	460	14.7
CBW-H $260 \mathrm{C}(\mathrm{H})(\mathrm{T}$)	260	160	7.6	CBW-H660C H (T)	660	560	17.1
CBW-H $330 \mathrm{C}(\mathrm{H})(\mathrm{T})$	330	230	9.2	CBW-H $760 \mathrm{CH}(\mathrm{T})$	760	660	19.5
CBW-H $400 \mathrm{C}(\mathrm{H})(\mathrm{T})$	400	300	10.9	CBW-H 860 CH (T)	860	760	22,0
CBW-H $460 \mathrm{C}(\mathrm{H})(\mathrm{T})$	460	360	12.3	CBW-H 960 C H (T)	960	860	24,4

Longest possible type 1000 mm

Vertical mounting

Type identification:

Please contact Danotherm with your request danotherm@danotherm.dk

Please specify your CBW resistor as follows

Bi-Alpha

Compact Power Resistor
45-175W
(forced air cooling $2 \mathrm{~m} / \mathrm{s}$)

The Bi-Alpha compact power resistors
Danotherm has developed flat power resistors for moderate power brake applications in drive systems, braking a few hundreds of watts to few kilowatts during a short time of braking.

The Bi-alpha is available in 3 sizes; Bi-Alpha 4, 5 and 6. Their nominal power is rated at 45W for size 4, 100W for size 5 and 175 W for size 6 . These values are valid for forced air cooling of $2 \mathrm{~m} / \mathrm{s}$. By increasing the airspeed the nominal power can be increased.

Because of its low profile height they can easily be mounted at the back side of an VFC (Voltage Frequency Converter).

The Bi-Alpha is a simple construction where the resistor wire is wounded on a mica substrate and insulated by mica sheets on both sides. This element is enclosed in a metal alloy housing made from aluminium and zinc. The Bi-Alpha resistors are a cost efective solution for small to medium power drive systems.

Connection leads are insulated with high temperature silicon, rated at $250^{\circ} \mathrm{C}$. IP value for each size is IP50.

Construction

The resistors are designed as follows:
The resistor elements are wire wound on a mica substrate. This substrate is insulated by two mica sheets to assure the minimum voltage breakdown. The housing is made from aluminium zinc alloy with good thermal properties. The standard cables are 300 mm AWG 18 600V. We can supply cables in specified lengths and mounted with cable shoes or connectors as required.

Simulations

The start for each resistor selection is a power-time graph from your application. Danotherm is able to predict the temperature of the resistor by using sophisticated models.

Pulse load

The ability to withstand pulse loads varies per resistor size, wire length and wire diameter. As such, it is impossible to create standard graphs that would apply for most customers applications.

At your request Danotherm performs the simulation for you based on your application.

The table shown is based on a resistor with a wire of 0.3 mm . For different duty times the maximum power is noted with a repetition time of 120 seconds. The table is only valid for mentioned wire diameter. With each ohm value a different model and different pulse loads apply.

Type Bi-Alpha	$\mathrm{P}_{\mathrm{N}}[\mathrm{~W}]$ @ $40^{\circ} \mathrm{C}$ air $2 \mathrm{~m} / \mathrm{s}$	Surface temp. [$\left.{ }^{\circ} \mathrm{C}\right]$ @ $40^{\circ} \mathrm{C}$	Pulse load during x each 120 seconds [W] @ $40^{\circ} \mathrm{C}$					$\begin{gathered} \mathrm{R}[\Omega] \\ \text { standard } \pm 10 \% \\ \text { on request } \pm 5 \% \end{gathered}$
			$\begin{gathered} 1 \mathrm{~s} \\ (0.8 \%) \end{gathered}$	$\begin{gathered} 2 \mathrm{~s} \\ (1.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5 \mathrm{~s} \\ (4.1 \%) \end{gathered}$	$\begin{gathered} 10 \mathrm{~s} \\ (8.3 \%) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 40 \mathrm{~s} \\ (33 \%) \\ \hline \end{array}$	
size 4	45	250	950	500	230	140	75	6-600
size 5	100	250	2500	1400	700	480	260	40-1500
size 6	175	250	4600	2500	1200	760	460	20-2500
General specifications								
Temperature Coefficient:			< $\pm 100 \mathrm{ppm}$					
Dielectric strength		standard	2500 VAC @ 1 minute					
Working voltage		standard	600 VAC / 850 VDC					
Insulation Resistance:			$>20 \mathrm{M} \Omega$					
Overload:@1sec pulse / hour			20-25x (depending on resistance)					
Overload:@ 5 sec pulse / hour			5-7x (depending on resistance)					
Cooling:			air $2 \mathrm{~m} / \mathrm{s}$					
Environmental:			$-40^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}$					
De-rating:			Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0,65^{*} \mathrm{Pn}$					

Bi-Alpha	W	H	D	weight
	$[\mathrm{mm}]$			$[\mathrm{g}]$
size 4	100	88	4,3	94
size 5	130	116	4,6	240
size 6	170	160	5,25	540

HVB70

Aluminium high pulse power air cooled Resistor 285kJ - 570kJ

HVB70 style resistors are high pulse load resistors used in The maximum pulse load energy strongly depends on the recrowbar and high energy dump applications like in Wind tur- sistor wire and with that the ohm value. Please, ask for sepabines. They are very compact and therefore can be used in applications where space is an issue. rate datasheet with the ohm value you require to get precise

The high pulse load energy is absorbed by the wire and then transferred to the filling, which is normally quartz sand. In general the temperature of the housing will stay very low. data.

The resistors have a low thermal drift, low noise level, are

The HVB70 range is build up with one or multiple extruded aluminium profiles. The connection can be with 1 meter of cable (other lengths are possible) or with a connection box with IP65 or IP66 ingress protection degree.

Low Voltage Ride Through (LVRT) has become an important requirement for wind farms which defines their ability to remain connected and actively contribute to grid stability during a wide range of network faults. Fault ride-through specifications listed in modern transmission and distribution grid codes, specify that wind-turbine generators must remain connected to electricity networks at voltage levels well below nominal. The dynamic braking resistor dissipates active power and boosts generator voltage, potentially avoiding the need for pitch control and dynamic reactive power compensation.

Other applications for Alpha-type alu-minium-housed brake resistors (HVB 70 types) include dynamic braking in traction applications, load-dump resistors in crowbar systems and snubbers in choppers and rectifiers .

The salient features of this resistor family are:

- Small dimensions
- Low- surface temperatures
- high pulse-load capabilities
- High vibration capabilities
- No external electrically-live parts
- high IP classes
- Fail-safe capabilities (on request)
- low noise levels
- high dielectric strengths.

HVB70

Type	Ohmic value [$\pm 5 \%$	Energy [k]]	Weight [kg]
HVB70.400.1	$0.2-250$	285	± 5
HVB70.400.2	$0.3-500$	570	± 9

General Specifications

Insulation resistance	all types	$\geq 40 \mathrm{M} \Omega$ @ 5,000 V DC	
Dielectric strength	HVB70.400.1	$18,000 \mathrm{VAC} @ 50 \mathrm{~Hz} 1 \mathrm{~min}$	
	HVB70.400.2	$12,000 \mathrm{VAC} @ 50 \mathrm{~Hz} 1 \mathrm{~min}$	
Protection degree		IP65	
Dimensions	$\mathrm{A}[\mathrm{mm}]$	C [mm]	H [mm]
HVB70.400.1	400	70	74
HVB70.400.2	400	140	74

HEAT SINK COOLED
 HSCC / HSAC

POWER THICK FILM RESISTORS

HSCC and HSAC:

POWER THICK FILM RESISTORS are supplies in a patented MODULAR construction that is ideal for customer specified RESISTOR MODULES as well as single resistors.

Construction:

The resistor body is a thick film resistor printed on ceramic Alumina. A glass cover film protects the resistor and the terminals are soldered to the substrate with $300^{\circ} \mathrm{C}$ solder which makes the terminations reliable even at overload conditions.

The resistor is mounted in an Aluminum Profile. High temperature plastic insulators and metal springs make a well-defined stable thermal contact between the resistor element and the aluminum profile. Between the resistor element and the profile is a heat conducting material.
The Ceramic resistor element is completely protected from mechanical damage and the resistor can be mounted to a heat sink without further notice. The below wattage curves demands the use of a heat sink compound.

Heat Sink Cooled Power Thick Film Resistor - Type HSCC, HSAC

Specifications:

Resistor tolerance:	Standard (NON-TRIMMING) TRIMMED RESISTORS	$\pm 15 \%$ Temperature Coefficients:
$1 \%, \pm 0.5 \%$		
Test voltage for $1 \mathrm{~min} .: ~$	$\pm 250 \mathrm{PPM}$	
Working voltage:	$6000 \mathrm{VDC} / 2500 \mathrm{VAC}$	
External Creeping Distance:	1100 VDC	
Temperature Limits:	12 mm	
Insulation:	$-40^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$	
Air Distance Terminal./Ground	$>100 \mathrm{M}^{2} \mathrm{OHM} / 500 \mathrm{~V}$	

TYPE: Values for standard resistors		HSCC 54 HSAC 36	HSCC 71 HSAC 52	HSCC 88 HSAC 70	$\begin{gathered} \text { HSCC } 104 \\ \text { HSAC } 87 \end{gathered}$	HSCC 122 HSAC 104
Max rated wattage	W	45	105	165	225	(MODULES)
Nominal power	W	22	50	80	105	(MODULES)
Surge load in $10 \mathrm{sec} .{ }^{*}$ (W	90	200	350	420	(MODULES)
Max voltage between terminal	V^{\wedge}	1000	2000	2500	2500	(MODULES)
Thermal Resistance	${ }^{\circ} \mathrm{K} / \mathrm{W}$	1.12	0.47	0.3	0.22	(MODULES)
Resistance Min.	Ohm	0.3	1	1.5	2	(MODULES)
Resistance Max.	MOhm	1	2	3	4	(MODULES)
Mechanical Specifications:						
HSCC L	mm	54	71	88	104	122
HSCC L1	mm	46	63	80	96	114
HSAC L	mm	36	52	70	87	104
HSAC L1	mm	-	-	40	50	75
Weight HSCC	g	26	33	44	55	65
Weight HSAC	g	35	45	56	70	90

WATTAGE OF HSCC AND HSAC TYPES:

The curves show the wattage for each resistor at different heat sink temperatures for resistors up to about 100 KOHMS / modules. The MAX. Permanent temperature on the resistor surface is $150^{\circ} \mathrm{C}$, and the MAX power or wattage is $400 \mathrm{~mW} / \mathrm{mm}^{2}$

The MAX WATTAGE is the maximum constant power at which the resistor can be operated.
The NOMINAL POWER is the power at which the resistor withstand 4 times overload in 10 seconds.
Resistors can be supplied non-trimmed with resistor tolerance $\pm 15 \%$. If a more narrow tolerance is requested the resistor have to be trimmed. In this case the wattage has to be reduced to 70% as shown on the curves

For Modular resistors (More resistors in one package) each resistor can be loaded corresponding to the size between two terminals. The HSCC resistor shown above with 3 resistors each resistor can be loaded like a single HSCC54 resistor.

HSCC 54 / HSAC 36
WATtAGE CREEPAGE distance on alumisianm TRIMM 1.00 mm

HSCC 71 / HSAC 52

Aluminium Housed Wirewound Power Resistor Type HSD

All-purpose Heat Sink Resistor for mounting on a Heat Sink chassis.

Aluminium Housed Wirewound Power Resistor Type HSD

Type HSD

For compact construction:

Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminium profile.

Solder, Cable and "Fast-On" Termination
More resistors in one profile possible.

Specifications:

Power rating	$12 \mathrm{~W}-300 \mathrm{~W}$	
Resistance range (standard)*	HSD 40:	R1-3K3
E12 values preferred for	HSD 70:	R22-6K8
smaller quantities	HSD 140:	R47-18K
	HSD 210:	R82-27K
	HSD 280:	1R - 39K
Resistance tolerance	$\pm 5 \% / \pm 10 \%$	
Temperature Coefficients		
Normal	$50 \mathrm{ppm}-150 \mathrm{ppm}$	
Low ohmic values	400 ppm	
Dielectric strength	2500 VAC peak	
Working voltage	1200 VAC	
Test voltage	6000 VDC	

Power Dissipation:

This graph shows the maximum wattage rating for each of the five possible resistors of standard size corresponding to the heat sin temperature. It is assumed that all resistors are equally loaded.

Mechanical specifications:

HSD	A	B	C
30	30	20	20
40	40	18.3	20
70	70	39.7	21.4
140	140	80	20
210	210	2×80	20
280	280	2×100	20

Please Order as follows:

Insulation

Silicone Rubber + MICA. The Silicone is UL-recognized (UL 94 HB) to a working temperature of $220^{\circ} \mathrm{C}$. Temperatures of up to $300^{\circ} \mathrm{C}$ can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.

Thermal Resistances:

Designing

The following equations are applied by the dimensioning of the resistors at stationary load.
If more information is required please consult Danotherm.
It's assumed that the air around the resistors is stationary. (Worst case).
Symbols employed:
$W_{\text {max }}$:
$\mathrm{T}_{\text {MAX }}$:
$\mathrm{T}_{\mathrm{AMB}}$: Ambient temperature
$\mathrm{R}_{\text {TH }}: \quad$ Thermal resistance. Refer to table Thermal resistances $T_{H} \quad: \quad$ Heat sink temperature (chassis).
$\mathrm{T}: \quad$ Temperature on top of the Aluminium profile.
Following conditions are possible:

1. HSD is mounted on a heat sink:
A. The thermal resistance $R_{T H}$ of the heat sink is known,
$\mathbf{T}=\mathbf{W}_{\text {MAX }} \mathbf{x}\left(\mathbf{R}_{\mathrm{TH} 4}+\mathbf{R}_{\mathrm{TH}}\right)$
Check that:

$$
\mathrm{T}_{\text {MAX }}=\mathrm{W}_{\text {MAX }} \mathrm{x}\left(\mathbf{R}_{\mathrm{TH}}+\mathbf{R}_{\mathrm{TH} 3}+\mathbf{R}_{\mathrm{TH} 1}\right)+\mathrm{T}_{\mathrm{AMB}}<220^{\circ} \mathrm{C}
$$

B. The Temperature of the Heat Sink is known,
$\mathbf{T}=\mathbf{W}_{\mathrm{MAX}} \mathbf{x} \mathbf{R}_{\mathrm{TH} 4}+\mathrm{T}_{\mathrm{H}}$
Check that:
$\mathrm{T}_{\text {MAX }}=\mathbf{W}_{\text {MAX }} \mathbf{X}\left(\mathbf{R}_{\mathrm{TH} 1}+\mathbf{R}_{\mathrm{TH} 3}\right)+\mathrm{T}_{\mathrm{H}}<\mathbf{2 2 0}{ }^{\circ} \mathrm{C}$
When the HSD is used close to maximum values heat sink compound should be applies.
2. HSD is mounted without a heat sink: Check that:
$\mathrm{T}_{\mathrm{MAX}}=\mathrm{W}_{\text {MAX }} \mathbf{X}\left(\mathrm{R}_{\mathrm{TH} 1}+\mathrm{R}_{\mathrm{TH} 2}\right)+\mathrm{T}_{\mathrm{AMB}}<220^{\circ} \mathrm{C}$

Aluminium Housed Wirewound Power Resistor Type HSF

Flat Heat Sink Resistor for mounting on a Heat Sink chassis.

Aluminium Housed Wirewound Power ResistorType HSF

Type HSF

For compact construction:

Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminium profile.

No heat sink compound is required because of large mounting surface.

Solder, Cable and "Fast-On" Termination
More resistors in one profile possible.

Specifications:

Power rating	$12 \mathrm{~W}-300 \mathrm{~W}$	
Resistance range (standard)	HSF 40:	R1 - 3K3
E12 values preferred for	HSF 70:	R22 - 6 K 8
smaller quantities	HSF 140:	R47 -18 K
	HSF 210:	R82 - 27K
	HSF 280:	1R - 39K
Resistance tolerance	$\pm 5 \% / \pm 10 \%$	
Temperature Coefficients		
Normal	$50 \mathrm{ppm}-150 \mathrm{ppm}$	
Low ohmic values	400 ppm	
Dielectric strength	2500 VAC peak	
Working voltage	1200 VAC	
Test voltage	6000 VDC	
* Low-ohmic values on request \# Type HSF		

Power Dissipation:

This graph shows the maximum wattage rating for each of the five possible ressistors of standard size corresponding to the heat sin temperature. It is assumed that all resistors are equally loaded.

Mechanical specifications:

HSF	A	B
40	40	-
70	70	39.7
140	140	80
210	210	2×80
280	280	2×100

Please Order as follows:

Insulation

Silicone Rubber + MICA. The Silicone is UL-recognised (UL 94 HB) to a working temperature of $220^{\circ} \mathrm{C}$.
Temperatures of up to $300^{\circ} \mathrm{C}$ can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.

Thermal Resistances:

Showing the Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$) between different measuring points.

	HSF 40	HSF 70	HSF 140	HSF 210	HSF 280
$\mathrm{R}_{\mathrm{TH} 1}$	4	2	1	0.75	0.5
$\mathrm{R}_{\text {TH } 2}$	11	6.8	3.9	2.75	2
$\mathrm{R}_{\text {TH3 }}$	0.2	0.1	0.05	0.03	0.02
$\mathrm{R}_{\text {TH } 4}$	0.5	0.3	0.17	0.1	0.085

Designing

The following equations are applied by the dimensioning of the resistors at stationary load.
If more information is required please consult Danotherm.
It's assumed that the air around the resistors is stationary. (Worst case).
Symbols employed:

$W_{\text {MAX }}:$	Maximum reguired load in resistor $\mathrm{T}_{\text {MAX }}:$
	Maximum hot spot temperature reguested in resistor $\left(\mathrm{T}_{\text {MAX }}<220^{\circ} \mathrm{C}\right)$ The lower $\mathrm{T}_{\text {MAX }}$ the higher reliability
$\mathrm{T}_{\text {AMB }}:$	and lifetime.
$\mathrm{R}_{\text {TH }}:$	Ambient temperature

Following conditions are possible:

1. HSF is mounted on a heat sink:
A. The thermal resistance $R_{T H}$ of the heat sink is known,
$\mathbf{T}=\mathbf{W}_{\mathrm{MAX}} \mathbf{X}\left(\mathrm{R}_{\mathrm{TH} 4}+\mathrm{R}_{\mathrm{TH}}\right)$
Check that:
$\mathrm{T}_{\mathrm{MAX}}=\mathrm{W}_{\mathrm{MAX}} \mathrm{x}\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{TH} 3}+\mathrm{R}_{\mathrm{TH} 1}\right)+\mathrm{T}_{\mathrm{AMB}}<\mathbf{2 2 0}{ }^{\circ} \mathrm{C}$
B. The Temperature of the Heat Sink is known,
$\mathbf{T}=\mathbf{W}_{\text {MAX }} \mathbf{x} \mathbf{R}_{\text {TH4 }}+\mathbf{T}_{\mathrm{H}}$
Check that:
$\mathrm{T}_{\mathrm{MAX}}=\mathrm{W}_{\text {MAX }} \mathbf{X}\left(\mathrm{R}_{\mathrm{TH} 1}+\mathrm{R}_{\mathrm{TH} 3}\right)+\mathrm{T}_{\mathrm{H}}<220^{\circ} \mathrm{C}$
2. HSF is mounted without a heat sink:

Check that:
$\mathrm{T}_{\text {MAX }}=\mathrm{W}_{\text {MAX }} \mathrm{X}\left(\mathrm{R}_{\mathrm{TH} 1}+\mathrm{R}_{\mathrm{TH} 2}\right)+\mathrm{T}_{\text {AMB }}<\mathbf{2 2 0 ^ { \circ }} \mathrm{C}$

HSF 140 A7R | Ohmic values |
| :--- |
| |
| |
| |
| |
| |
| A: AMP terminals |
| L: Tinned lugs |
| S: Screw-on terminals |
| C: Cable (specified) |
| Size in mm. |

DANOTHERM

Wirewound resistors

Vitreous Enamelled and Cement Coated
Round and Oval Shaped
Sigma Modular Wirewound Brake Resistors

- 15-5000W
- Solder, Screw or Fast-on terminals
- Different styles of mounting brackets
- Open type IPOO and Sigma IP20
- Increased creepage distance for high voltage applications
- Optional Live terminals (only oval shaped types)
- Wide ohm range

DANOTHERM TYPE	$\begin{aligned} & \mathrm{P} \text { nom * } \\ & @ 25^{\circ} \mathrm{C} \\ & \mathrm{~T}=350^{\circ} \mathrm{C} \end{aligned}$	CRITICAL VOLT rms	$\begin{aligned} & \text { INSU- } \\ & \text { LATION } \\ & \text { VOLT } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { CRIT. } \\ \text { RES } \end{array}$	$\begin{aligned} & \text { RMIN } \\ & \pm 15 \% \\ & \text { ZRF/I } \end{aligned}$	$\begin{gathered} \pm 10 \% \\ \text { GRV } \\ \text { ZRV } \end{gathered}$	ZBF	RMAX GRF ZRF	GRV ZRV	$\begin{aligned} & \text { GRI } \\ & \text { ZRI } \end{aligned}$	ZBF	PREF
	W	V	V	$\mathrm{k} \Omega$	$\mathrm{m} \Omega$	Ω	$\mathrm{m} \Omega$	$\mathrm{k} \Omega$	$\mathrm{k} \Omega$	Ω	Ω	
GRF/ZRF 10/44	17	270	1000	4,2	56	0,8	-	8	1,8	22	-	P
GRF/ZRF 10/55	22	430	1000	8,4	100	0,6	-	12	2,7	33	-	
GRF/ZRF 10/63	25	550	1000	12	100	0,6	-	18	3,9	47	-	P
GRF/ZRF 12/51	24	370	1000	5,7	47	1	-	12	3,3	39	-	
GRF/ZRF 12/63	30	550	1000	10	56	1	-	22	4,7	56	-	P
GRF/ZRF 12/76	36	750	1000	15	82	1	-	27	5,6	68	-	
GRF/ZRF 12/102	48	1200	1000	30	82	1	-	47	8,2	120	-	P
GRF/ZRF 13/51	28	370	1200	4,8	56	1	-	18	3,6	47	-	P
GRF/ZRF 13/63	32	550	1200	9.4	56	1	-	22	5,6	47	-	P
GRF/ZRF 13/100	52	1100	1200	23	82	1	-	47	10	120	-	P
GRF/ZRF 15/51	30	370	1200	4,5	56	1	68	18	3,3	47	3	
GRF/ZRF 15/63	38	550	1200	7,9	56	1	100	27	5,6	56	6	P
GRF/ZRF 15/76	45	750	1200	12	82	1	150	33	6,8	68	8	
GRF/ZRF 15/100	60	1100	1200	20	82	1	220	58	12	120	12	P
GRF/ZRF 20/50	40	360	1200	3,2	56	0,3	33	22	4,7	47	4	
GRF/ZRF 20/75	60	730	1200	8,8	100	0,3	75	47	10	100	8	
GRF/ZRF 20/100	78	1100	1200	15	220	0,3	120	56	15	150	12	P
GRF/ZRF 20/140	100	1700	1200	28	220	0,3	180	82	22	220	22	P
GRF/ZRF 20/165	120	2100	1200	36	220	0,5	220	100	27	280	27	P
GRF/ZRF 20/267	200	3600	1200	64	220	1	390	150	47	470	47	P
GRF/ZRF 24/165	150	2100	1200	29	220	1	180	100	33	270	27	P
GRF/ZRF 30/75	85	730	1200	6,2	120	1	39	39	15	120	12	
GRF/ZRF 30/100	110	1100	1200	11	180	1	68	56	22	180	18	P
GRF/ZRF 30/133	150	1600	1200	17	270	1	100	78	33	220	27	P
GRF/ZRF 30/152	170	1900	1200	21	330	1	120	82	39	270	33	P
GRF/ZRF 30/156	175	2000	1200	22	330	1	120	82	42	270	33	P
GRF/ZRF 30/165	185	2100	1200	23	330	1	150	100	42	330	39	
GRF/ZRF 30/200	225	2600	1200	30	390	1	150	120	47	420	42	P
GRF/ZRF 30/215	245	2900	1200	34	470	1	180	150	56	470	47	
GRF/ZRF 30/250	275	3400	1200	42	560	1	220	150	68	560	56	
GRF/ZRF 30/265	300	3600	1200	43	560	1	220	180	68	560	68	P
GRF/ZRF 30/330	375	4600	3000	56	680	1	270	180	82	750	75	P
ZRF 45/370	600	5200	2400	45	1	1	200	-	1000	120		
ZRF 55/100	180	800	3000	3,5	150	1	120	47	-	180	18	P
ZRF 55/150	250	1200	3000	5,7	300	1	270	56	-	270	39	P
ZRF 55/215	330	1900	3000	10	560	1	560	75	-	330	47	P
ZRF 55/290	450	2700	3000	16	820	1	680	100	-	470	68	P
ZRF 55/300	450	2800	3000	17	1000	1	820	100	-	470	68	
ZRF 55/390	600	3700	3000	22	1200	1,2	1000	150	-	620	100	P
ZRF 55/400	600	3800	3000	24	1200	1,5	1000	150	-	620	100	
ZRF 55/490	800	4700	3000	27	1500	1,5	1200	180	-	750	120	P
ZRF 55/500	800	4800	3000	28	1500	2,2	1200	180	-	750	120	
ZRF 55/590	1000	5700	3000	32	1500	2,2	1500	200	-	1000	150	P

* Nominal power rating; for corrugated wire types (ZBF/GBF) allow 20% higher power High ohm values, exceeding critical resistance values, should be de-rated by 25%.
Induction low types should be de-rated by 50%.
* standard insulation voltage levels, higher levels on request.

Vitreous Enamelled and Cemented Power Resistors from 15 W to 1000 W

Danotherm Electric A/S was founded in Copenhagen in 1919. We manufacture high performance reliable electrical components and systems. Our products can be found in the most professional sectors of the industry.

Our standard program includes:

GRF/ZRE: fixed resistors for ac and dc current. Standard tolerance of $\pm 10 \%$ and 5% on request. Can be fitted with mounting feet and intermediate bands if required.

GRV/ZRV; resistor with one or more variable connection band

GRI/ZRI; induction low resistors by double winding (Ayrton-Perry)

GBF/ZBF; corrugated winding for high pulse load and low ohm values. The corrugated wire functions as fins, increasing the active surface area. As a rule of thumb, the nominal power increases by some 20\%. Also available in variable band types (GBV/ZBV)

Specifications

All-welded construction.
Tolerance:
R >1 : $\pm 5 \%$ or 10% (see table 1)
Power rating. Based on $25^{\circ} \mathrm{C}$ and
Horizontal mounting.
Temperature Range: $-50^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}$
Temperature coefficient
Low ohm: 200 (400ppm)/ ${ }^{\circ}$
Medium-high ohm: $<100 \mathrm{ppm} /{ }^{\circ}$.
Dielectric voltage: Based on indicated creepage distance (k in table 2) from terminals to mounting bracket. 5 mm : 1000 V , $6 \mathrm{~mm}: 1200 \mathrm{~V}$.
Other values than indicated are possible
overload.
General: 10 X in 5 seconds.

Item description

ZBF 30/330 S xxR K 000
\qquad
Drawing No. ($001=5 \%$ tolerance; $000=10 \%$ tolerance. $)$, other numbers are customized types Resistance toler ance $J=5 \%, K=10 \%$ Ohmic value ($16 \mathrm{R}=16 ; 5 \mathrm{k} 6=5.6 \mathrm{k}$)
S: Screw (order separate in bag) / L Tinned / A: Fast-On Length of resistor body in mm
Diameter of resistor body in mm
F: Fixed resistor /I: Low induction / V: Adjustable R. Normal wire / B: Corrugated flat wire
G. Vitreous Enamelled / Z: Cement coated

Materials:

Core:

Diameter $10-30 \mathrm{~mm}$: Steatite C221 Porcelain C110, only certain types. Diameter 45 mm : Porcelain C410 Diameter: 55 mm : Corderite C520
Steatite C221 is the optimal choice of ceramic bases material for temperatures below $350-400^{\circ} \mathrm{C}$. It has high mechanical strength and excellent DC stability. If higher temperatures can be expected porcelain C110 can be used. For our large resistor types, corderite C520 are used due to its very high stability to temperature changes.

Terminals:

FeNi42 ; has an equivalent temperature expansion coefficient likes Steatite. FeNi42. Can be soldered when it is clean from oxidation and is relatively stainless.

Wire:

Low Ohms: CuNi10 (T.C: 400ppm)/
CuNi 23 Mn (T.C: 200ppm)
Medium Ohms:
CuNi44 (T.C. < 80ppm)
High Ohms: NiCr8020; CrAlFe,
(T.C. <100ppm)

Coating:

Vitreous Enamel, excellent protection to thin wires. All Vitreous Enamelled Resistors meet the IEC 68-2-3 Ca. 56 days. Vitreous enamel can only be used on Steatite.
AIPO4 is the best choice regarding high pulse load capability and high temperature stability.

Thermal models are available

Each resistor can be provided with data sheets including an individual thermal model for simulating temperature rises during load. Please, see last page

TVPE	Profile	D	L	L Tol.	d	$\underset{\max }{D}$	$\begin{gathered} b \\ \mathrm{~L}, \mathrm{~S} / \mathrm{A} \end{gathered}$	e	c^{*}	$\begin{gathered} k \\ \mathrm{~min} \end{gathered}$	$\begin{aligned} & \mathrm{L} 1 \pm 1 \\ & \mathrm{~L}, \mathrm{~S} / \mathrm{A} \end{aligned}$	LB	fxi	Typ. Mass
		$\underset{\emptyset}{\mathrm{mm}}$	mm	$\pm \mathrm{mm}$	mmø	mm	mm	mmø	mm	mm	mm	mm	mm	8
GRF/ZRF 10/44	1		44	0,7			4,8/6,3	3,2		5	32,3/30,8	58		11
GRF/ZRF 10/55	1	10	55	0,9	6	13	4,8/6,3	3,2	19	5	43,1/41,6	69	3,2×6	14
GRF/ZRF 10/63	1		63	1,2			4,8/6,3	3,2		5	50,9/49,4	77		15
GRF/ZRF 12/51	1		51	0,9			4,8/6,3	3,2		5	39,2/37,7	65		19
GRF/ZRF 12/63	1	12	63	1,2	5,5	16	4,8/6,3	3,2	16,5/21	5	50,9/49,4	77	3,2×6	22
GRF/ZRF 12/76	1		76	1,4			4,8/6,3	3,2		5	63,7/62,2	90		26
GRF/ZRF 12/102	1		102	2,0			4,8/6,3	3,2		5	89,2/87,7	116		34
GRF/ZRF 13/51	1		51	0,9	8,3		4,8/6,3	3,2		6	38,2/36,7	-		20
GRF/ZRF 13/63	1	13	63	1,2	5,5	17	4,8/6,3	3,2	15,5/20	6	49,4/48,4	-	-	24
GRF/ZRF 13/100	1		100	1,8	5,5		4,8/6,3	3,2		6	86,2/84,7	-		40
GRF/ZRF 15/51	1		51	0,9			4,8/8	3,2		6	38,2/35	65		22
GRF/ZRF 15/63	1		63	1,2			4,8/8	3,2		6	49,4/46,7	77		26
GRF/ZRF 15/76	1	15	76	1,4	10	19	4,8/8	3,2	22	6	62,7/59,5	90	4,2×8	30
GRF/ZRF 15/100	1		100	1,8			4,8/8	3,2		6	86,2/83	114		40
GRF/ZRF 20/50	1		50	0,8			4,8/8	3,2		6	37,2/34	66		40
GRF/ZRF 20/75	1		75	1,4			4,8/8	3,2		6	61,7/58,5	91		55
GRF/ZRF 20/100	1	20	100	1,8	12	24	8	4,2	22/25	6	83	116	5,5×8	70
GRF/ZRF 20/140	1		140	2,5			8			6	122,2	156		100
GRF/ZRF 20/165	1		165	3,0			8			6	146,7	181		115
GRF/ZRF 20/267	1		267	4,6			8			6	246,7	283		190
GRF/ZRF 24/165	1		165	3,0			8			6	146,7	181		155
GRF/ZRF 30/75	1		75	1,4			8			6	58,5	93		105
GRF/ZRF 30/100	1;3		100	1,8			8			6	83	118		135
GRF/ZRF 30/133	1;3		133	2,5			8			6	115,3	151		175
GRF/ZRF 30/152	1		152	2,8			8			6	134	170		200
GRF/ZRF 30/156	1	30	156	3,0	20	34	8	4,2	30	6	137,9	174	5,5×8	207
GRF/ZRF 30/165	1;3		165	3,0			8			6	146,7	183		220
GRF/ZRF 30/200	1		200	3,8			8			6	181	218		265
GRF/ZRF 30/215	1;3		215	4,2			8			6	195,7	233		285
GRF/ZRF 30/250	1;3		250	4,2			8			6	230	268		320
GRF/ZRF 30/265	1;3		265	4,6			8			6	244,7	283		350
GRF/ZRF 30/330	1;3		330	5			8			15	301	348	5.5×8	440
ZRF 45/370	1	45	370	5,5	30	50	10	5,2	39	12	341,6	-	-	950
ZRF 55/100	1		100	1,8			10			15	72	124		260
ZRF 55/150	1		150	2,5			10			15	111,2	175		355
ZRF 55/210	1		210	4,2			10			15	179,8	236		525
ZRF 55/290	1		290	4,6			10			15	258,2	317		725
ZRF 55/300	1	55	300	4,6	42	60	10	5,2	43,5	15	268	327	5,5×10	740
ZRF 55/390	1		390	5,5			10			15	356,2	418		940
ZRF 55/400	1		400	5,5			10			15	366	428		960
ZRF 55/490	1		490	6,8			10			15	454,2	517		1200
ZRF 55/500	1		500	6,8			10			15	464	527		1230
ZRF 55/590	1		590	7,6			10			15	553	618		1450

Table 2, Mechanical Specifications

Flat Oval Shaped Wirewound Resistors

DANOTHERM TVPE	$\begin{aligned} & \mathrm{P} \text { nom }{ }^{\circ} \\ & \mathrm{T}=350^{\circ} \mathrm{C} \\ & @ @ 25^{\circ} \mathrm{C} \end{aligned}$	CRITICAL VOLT	INSULATION VOLT **	RES	RMIN GFF ZFF	$\begin{aligned} & \text { GFF } \\ & \text { GF } \end{aligned}$	$\begin{aligned} & \text { RMAX } \\ & \text { GFF } \\ & \text { ZFF } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{GFV} \\ & \mathrm{ZFV} \end{aligned}$	$\begin{aligned} & \mathrm{GFI} \\ & \mathrm{ZFI} \end{aligned}$
	W	V	V	k Ω	$\mathrm{m} \Omega$	Ω	$\mathrm{k} \Omega$	$\mathrm{k} \Omega$	Ω
GFF/ZFF 20/50	30	360	1000	4.3	56	1	5.6	-	47
GFF/ZFF 20/80	50	810	1000	13	75	1	12	-	82
GFF/ZFF 20/90	55	960	1000	16	100	1	12	-	100
GFF/ZFF 20/100	60	1100	1000	20	120	1	15	-	120
GFF/ZFF 20/120	70	1400	1000	28	150	1	18	-	150
GFF/ZFF 27/50(-M)	40	360	1200	3.2	56	1	6.8	3.3	47
GFF/ZFF 27/80(-M)	60	810	1200	10	68	1	15	6.8	100
GFF/ZFF 27/90(-M)	65	960	1200	14	82	1	18	8.2	120
GFF/ZFF 27/100(-M)	70	1100	1200	17	100	1	22	10	150
GFF/ZFF 27/120(-M)	90	1400	1200	21	120	1	27	12	220
GFF/ZFF 27/153(-M)	110	1900	1200	32	150	1	33	15	270
ZFF 45/150(-M)	180	1900	1200	20	150	1	47	-	270
ZFF 45/200(-M)	225	2600	1200	30	180	1	68	-	330
ZFF 45/250(-M)	280	3400	1200	41	220	1	100	-	470
ZFF 78/100(-M)	180	800	3000	3.5	150	1	4.7	-	180
ZFF 78/140(-M)	250	1200	3000	5.7	300	1	5.6	-	270
ZFF 78/210(-M)	330	1900	3000	10	560	1	7.5	-	330
ZFF 78/290(-M)	450	2700	3000	16	820	1	10	-	470
ZFF 78/390(-M)	600	3700	3000	22	1200	1.2	15	-	620
ZFF 78/490(-M)	800	4700	3000	27	1500	1.5	18	-	750

TYPE	$\begin{gathered} D \\ \max \end{gathered}$	$\underset{\max }{d}$	L	$\begin{gathered} \mathrm{L} \\ \text { Tol. } \end{gathered}$	$\begin{aligned} & \mathrm{L} 1 \pm 1 \\ & \mathrm{~L} 1.5 / \mathrm{A} \end{aligned}$	Lb	Ltot	kmin	$\begin{gathered} b \\ L 1.5 / A \end{gathered}$	e	fxi	Typ. Mass
	mm	mm	mm	$\pm \mathrm{mm}$	mm	mm	mm	mm	mmø	mm	mm	g
GFF/ZFF 20/50	23	9.5	50	1	38.2/36.7	67	86	5	4.8/6.3	3.2	5.5×10.5	22
GFF/ZFF 20/80	23	9.5	80	1.6	67.6/66.1	97	116	5	4.8/6.3	3.2	5.5×10.5	32
GFF/ZFF 20/90	23	9.5	90	1.8	77.4/75.9	107	126	5	4.8/6.3	3.2	5.5×10.5	35
GFF/ZFF 20/100	23	9.5	100	2	87.2/85.7	117	136	5	4.8/6.3	3.2	5.5×10.5	40
GFF/ZFF 20/120	23	9.5	120	2.4	106.8/105.3	137	156	5	4.86 .3	3.2	5.5×10.5	45
GFF/ZFF 27/50	30	10	50	1	37.2/35.7	67	86	6	4.8/6.3	3.2	5.5×10.5	30
GFF/ZFF $27 / 80$	30	10	80	1.6	66.6/65.1	97	116	6	4.8/6.3	3.2	5.5×10.5	45
GFF/ZFF 27/90	30	10	90	1.8	76.4/74.9	107	126	6	4.8/6.3	3.2	5.5×10.5	48
GFF/ZFF 27/100	30	10	100	2	86.2/84.7	117	136	6	4.8/6.3	3.2	5.5×10.5	55
GFF/ZFF 27/120	30	10	120	2.4	105.8/104.3	137	156	6	4.8/6.3	3.2	5.5×10.5	65
GFF/ZFF 27/153	30	10	153	3.1	138.1/136.6	170	189	6	4.8/6.3	3.2	5.5×10.5	75
ZFF 45/150	48	12	150	3	136	170	190	6	8	4.2	6.5×10	155
ZFF 45/200	48	12	200	4	185	220	240	6	8	4.2	6.5×10	200
ZFF 45/250	48	12	250	5	234	270	290	6	8	4.2	6.5×10	250
ZFF 78/100	81	25	100	2	72	137	164	15	10	5.3	6.5×12	260
ZFF 78/140	81	25	140	2.8	111	177	204	15	10	5.3	6.5×12	355
ZFF 78/210	81	25	210	4.2	178	247	274	15	10	5.3	6.5×12	525
ZFF 78/290	81	25	290	5.8	258	327	354	15	10	5.3	6.5×12	725
ZFF 78/390	81	25	390	7.8	356	427	454	15	10	5.3	6.5×12	940
ZFF 78/490	81	25	490	9.8	454	527	554	15	10	5.3	6.5×12	1200

Custom designed resistors and assemblies are available on request. Details like wire configuration, creepage distance and inductance can be specified by the customers. The choice between more than 50 sizes guarantee our customer that the best resistor configuration can be found within our program. Special lengths are very well possible

Contact our sales department or email: danotherm@danotherm.dk for special configurations.

Standard, 'Turtles' and 'M-types':

Flat Oval Shaped Vitreous Enamelled or Cement Coated Resistors can be supplied in various types: A 'Turtle' style, having 4 soldering legs to stand on, ideally suited for mounting on PCB's with good mechanical stability
'Turtles' are offered in 78 mm types (all lengths)

Mechanical Dimensions:

M-type Oval shaped wirewound resistors have live terminals for easy electrical and mechanical connection.

* Nominal power rating:

High ohm values, exceeding critical resistance values, should be de-rated by 25%.
Induction low types should be de-rated by 50%.

* standard insulation voltage levels, higher levels on request.

Item description

ZFF 45/200 S xxR K 000

Drawing No. (000 is standard) Resistance tolerance $5 \%, 10 \%$ or 15% Ohmic value $(16 \mathrm{R}=16 ; 5 \mathrm{k} 6=5.6 \mathrm{k})$ S: Screw / L: Tinned / A: Fast-On Length of resistor body in mm Diameter of resistor body in mm
F: Fixed resistor / I: Low induction / V: Adjustable F: Flat / Oval type
G. Vitreous Enamelled / Z: Cement coated

Overload Capability
Wirewound resistors can be overloaded during certain time for several their nominal power rating. Underneath curve shows the overload capability in percentage of the nominal power for pulse loads at given duration with a cycle time of 120 seconds.

Temperature rise at constant load.
The maximum surface temperature rise is $350^{\circ} \mathrm{C}$. Underneath curve shows the relation between power and surface temperature. For very dynamic power loads we suggest our Cement Coated resistors.

At elevated ambient temperatures the admissible maximum power dissipation must be de-rated to prevent over-heating. Derating is done linearly from $25^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ at 100% nominal power to 0 . Underneath curve shows the relation between ambient temperature and max power dissipation.

Forced air cooling increases the ability to expel heat to the ambient air. Underneath curve show the relation between airspeed and maximum admissible power dissipation.

M-type Live-Terminals Wirewound Resistors

TYPE	D max	max	L	L Tol	Lb	Ltot	fxi	Typ. Mass
	mm	mm	mm	$\pm \mathrm{mm}$	mm	mm	mm	g
GFF/ZFF 27/50-M	37	10	50	1	67	86	5.5×10	30
GFF/ZFF 27/80-M	37	10	80	1.6	97	116	5.5×10	45
GFF/ZFF 27/90-M	37	10	90	1.8	107	126	5.5×10	48
GFF/ZFF 27/100-M	37	10	100	2	117	136	5.5×10	55
GFF/ZFF 27/120-M	37	10	120	2.4	137	156	5.5×10	65
GFF/ZFF 27/153-M	37	10	153	3.1	169	188	5.5×10	75
ZFF 45/150-M	59	12	150	3	170	190	6.5×10	155
ZFF 45/200-M	59	12	200	4	220	240	6.5×10	200
ZFF 45/250-M	59	12	250	5	270	290	6.5×10	250
ZFF 78/100-M	96	25	100	1.8	128	156	6.5×12	260
ZFF 78/140-M	96	25	140	2.5	168	196	6.5×12	355
ZFF 78/210-M	96	25	210	4.2	238	266	6.5×12	525
ZFF 78/290-M	96	25	290	5	318	346	6.5×12	725
ZFF 78/390-M	96	25	390	5.5	418	446	6.5×12	940
ZFF 78/490-M	96	25	490	6.8	518	546	6.5×12	1200

乏 SIGMA-Modular Wirewound Brake Resistors

SIGMA is our range of MODULAR BRAKE RESISTORS. Thanks to the modular construction it is possible also at small quantities to supply an optimum solution to any problem concerning starter brake resistors in connection with frequency converters. The resistor components consist of fully welded wire wound ceramic resistors, which is a well-known and approved technology. The base material is corderite, which is a type of ceramic with a very high resistance to temperature changes and the wire is coated with aluminium phosphate to protect the wire and conduct the heat developed in the wire on to the ceramic core. Aluminium-phosphate is stable at $700^{\circ} \mathrm{C}$.

The modular resistor cages comply with IP20 and give electrical and thermal Protection The resistors have a nominal load from 100 W and upward and are particularly suitable for pulse load of 10-20 time or more compared to the nominal load because of the ceramic core material and an extra high weight of wire. We have developed thermal models corresponding to all resistor types and resistor values. By using these models we are able to calculate the temperature rises in the resistor wire for all possible load situations. Danotherm offers our assistance to our customers to find the optimum solution for any situation.

Type	Weight	Ohmic Range	Number of Resistors	Nominal Load	$\begin{gathered} \text { Pulse Load } \\ 10 \% \text { E.D. } \\ 10 \text { sec } \end{gathered}$	Width	Length	Height	Mount. Holes	Mount. Holes
						A	B	C	D	E
	kg	$\mathrm{m} \Omega-\mathrm{k} \Omega$		W	kw	mm	mm	mm	mm	mm
ZRF 55 / 1000×1	1.1	120-47	1	180	1,25	89	160	115	64	135
ZRF 55 / 1500×1	1.2	270-56	1	250	1,70	89	210	115	64	186
ZRF 55 / 1500×2	2		2	500	3,40	176	210	115	150	186
ZRF 55 / 1500×3	3.2		3	750	5,00	265	210	115	240	186
ZRF 55 / 1500×4	3.8		4	800	5,80	176	210	230	150	186
ZRF 55 / 1500×6	5.7		6	1200	8,70	265	210	230	240	186
ZRF 55 / 2200×1	2.1	560-75	1	330	2.6	89	270	115	64	246
ZRF 55 / 2200×2	2.9		2	650	5,20	176	270	115	150	246
ZRF 55 / 2200×3	4.1		3	1000	7,80	265	270	115	240	246
ZRF 55 / 2200×4	5		4	1100	8,60	176	270	230	150	246
ZRF 55 / 2200×6	7.2		6	1500	12,50	265	270	230	240	246
ZRF 55 / 3000×1	2.2	680-100	1	450	3,60	89	350	115	64	326
ZRF 55/300 0×2	3.5		2	900	7,20	176	350	115	150	326
ZRF 55 / 3000×3	5.1		3	1300	10,80	265	350	115	240	326
ZRF 55 / 3000×4	6.3		4	1500	12,00	176	350	230	150	326
ZRF 55 / 3000×6	9		6	2200	18,00	265	350	230	240	326
ZRF 55 / 4000×1	2.4	1000-150	1	600	4,80	89	450	115	64	426
ZRF 55 / 4000×2	4.2		2	1200	9,60	176	450	115	150	426
ZRF 55 / 4000×3	5.6		3	1800	14,40	265	450	115	240	426
ZRF 55 / 4000×4	7.6		4	2000	16,00	176	450	230	150	426
ZRF 55 / 400 0×6	11		6	3000	24,00	265	450	230	240	426
ZRF 55/500 0×1	3	1200-180	1	800	5,80	89	550	115	64	526
ZRF 55 / 5000×2	4.6		2	1600	11,60	176	550	115	150	526
ZRF 55/500 0×3	7.2		3	2400	17,40	265	550	115	240	526
ZRF 55 / 5000×4	8.9		4	2600	19,00	176	550	230	150	526
ZRF 55 / 5000×6	13.2		6	3800	28,50	265	550	230	240	526
ZRF 55/600 0×1	3.5	1500-200	1	1000	7,00	89	650	115	64	626
ZRF 55/600 0×2	5.8		2	2000	14,00	176	650	115	150	626
ZRF 55 / 6000×3	7.6		3	3000	21,00	265	650	115	240	626
ZRF 55 / 6000×4	10.4		4	3200	22,50	176	650	230	150	626
ZRF 55 / 6000×6	15		6	5000	34,00	265	650	230	240	626

Each SIGMA-MODULE is supplied with resistor components corresponding to the actual load and according to the mechanical sizes shown in the table. In principle as many components as necessary can be mounted together. The modules can be supplied as open resistors (only resistor and mounting brackets) or with protection grating according to IP20 and with a ceramic housing connector or with a connector box. Further more it is possible to have a thermostat which works as a temperature watch and high voltage versions $>400 \mathrm{VDC}$.

Thermostats

The thermostat, which surveys the temperature on the resistor element, is equipped with a NC switch for warning the frequency converter if the resistor is over loaded. It is mounted on lower side of one or more resistor elements and has directly thermal contact. The standard switching temperature is $260^{\circ} \mathrm{C}$. Other (lower) temperatures are possible. If the thermostat is connected to the coil of a contactor, it can work as a thermal fuse. The switch is specified to 250/380VAC, $10 / 5 \mathrm{~A}$. The thermostat is isolated from the resistor via the ceramic housing. For voltages >400VDC the thermostat is isolated with a double MICA strip.

¿Wirewound Brake Resistors UL Approved

Type	Pnom	Max Surface Temp. @ 40	$15 / 120 \mathrm{~s}$	$5 \mathrm{~s} / 120 \mathrm{~s}$	$10 \mathrm{~s} / 120 \mathrm{~s}$	$40 \mathrm{~s} / 120 \mathrm{~s}$	Ohmic Range
	W	${ }^{\circ} \mathrm{C}$	kW	kW	kW	kW	$\Omega-\mathrm{k} \Omega$
ZRF 55/300 0481	430	375	8	4.8	3.5	1.2	$1.0-0.4$
ZRF 55/400 0481	575	375	12	6	4.5	1.6	$1.5-0.9$
ZRF 55/500 0481	725	375	18	8	6	2	$2.2-1.2$
ZRF 55/600 0481	875	375	22	10	7	2.6	$2.5-1.5$
ZRF 55/400 0482	900	375	24	12	9	2.7	$3.0-1.8$
ZRF 55/500 0482	1130	375	36	16	12	3.3	$4.0-2.2$
ZRF 55/600 0482	1365	375	44	20	14	3.9	$5.5-3.0$
ZRF 55/500 0483	1545	375	54	24	18	4.5	$6.5-3.6$
ZRF 55/600 0483	1860	375	66	30	21	5.5	$6.8-4.5$
ZRF 55/500 0484	2060	375	72	32	24	6	$2.0-4.8$
ZRF 55/600 0484	2480	375	88	40	28	9.5	$2.8-6.2$
ZRF 55/500 0486	3065	375	105	56	36	9	$3.3-6.8$
ZRF 55/600 0486	3690	375	130	60	52	11	$3.5-10$
ZRF 55/500 0489	4030	375	160	70	54	12	$1.5-6.8$
ZRF 55/600 0489	4855	375	180	85	60	14	$1.8-10$

Type	$A \pm 2$	$B 1 \pm 2$	$C \pm 2$	$\mathrm{D} \pm 1$	$E \pm 3$	$F \pm 3$	Weight
	mm	mm	mm	mm	mm	mm	kg
ZRF 55/300 0481	97	350	142	64	326	435	2.5
ZRF 55/400 0481	97	450	142	64	426	535	3
ZRF 55/500 0481	97	550	142	64	526	635	3.5
ZRF 55/600 0481	97	650	142	64	626	735	4
ZRF 55/400 0482	188	450	142	150	426	535	5
ZRF 55/500 0482	188	550	142	150	526	635	5.5
ZRF 55/600 0482	188	650	142	150	626	735	6.5
ZRF 55/500 0483	279	550	142	240	526	635	7.8
ZRF 55/6000483	279	650	142	240	626	735	8.5
ZRF 55/500 0484	188	550	252	150	526	635	9.5
ZRF 55/600 0484	188	650	252	150	626	735	11
ZRF 55/500 0486	274	550	252	240	526	635	14
ZRF 55/600 0486	274	650	252	240	626	735	15
ZRF 55/500 0489	274	550	342	240	526	635	17
ZRF 55/600 0489	274	650	342	240	626	735	18

MATERIALS :

Resistor

Ceramic Core: 20-30 mm Ø Steatite C221 55 mm Ø Corderite
Resistor Wire: CrAlFe / CrNi / CuNi
Terminals: FeNi42
Coating: Aluminiumphosphate

Resistor Cage

Mounting Bracket: Steel, hot galvanized $1,5 \mathrm{~mm}$
Protection grating: Steel, hot galvanized $1,5 \mathrm{~mm}$, perforated
Connectors: Porcelain
Cables: Silicone (Silicone less possible)
Resistor tolerance:
Standard: $\pm 10 \%$

TYPE IDENTIFICATION:

MB: Mounting Bracket PC: Porcelain connector PG: Protecting Grating TW: Temperature Watch CB: Connector Box

Mounting Brackets for Round Style Resistors

Mounting Brackets		Complete Sets					
Profile 1		Profile 1		300 Profile 3	300 Profile 3		$55 \emptyset$
$10 \mathrm{~mm} \varnothing / 12 \mathrm{~mm}$:	R101	20 mm :	R701/Length	R801/Length	$30 \mathrm{~mm} \varnothing$:	R107	R901
15 mm m:	R102	30 mm :	R702/Length	(Thru bolts)			
20 mmg :	R103	55 mm :	R703/Length				
24 mm \%	R104						
30 mm \%	R105						

Mounting Brackets for Oval Shape Style Resistors

Mounting brackets for Wirewound resistors need to be ordered separately.

All Danotherm Resistors can be equipped with a thermal model, which makes it possible to calculate the TEMPERATURE RISE during a specified load. Particularly by pulse loads it is possible to simulate the temperature rise by using a program as PSpice.
You can ask DANOTHERM to simulate or ask for the thermal model of your resistor to do the simulation your self.

DK-2610 Roedovre
Denmark
CVR 10126061

DRNOTHERM

CBH / CBV / CBR-V / CBR-H

- Brake resistors
- General-purpose applications; High pulse load applications
- Compact Construction; small dimensions
- Fully insulated; no external live parts
- High IP Classes
- Low thermal drift, 100ppm
- Fail Safe capabilities on request
- Low noise
- Thermal models for all types available on request
- Resistor components are UL approved

CBH / CBV / CBR Cable cable connection IP54

$\begin{gathered} \mathrm{CBH} / \mathrm{CBV} \\ \mathrm{CBR}-\mathrm{V} / \mathrm{CBR}-\mathrm{H} \end{gathered}$	Pn [W] @ $40^{\circ} \mathrm{C}$ According UL508	max temp $\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{gathered} \mathrm{R}[\Omega] \\ \min -\max \end{gathered}$	Pulse load [kW] T. Amb. $=40^{\circ} \mathrm{C}$ each 120 s *			
				duty 1 second [kW]	duty 5 second [kW]	duty 10 second [kW]	duty 40 second [KW]
$\mathrm{CBH} / \mathrm{CBV} 165 \mathrm{C}$	110	265	0.5-1000	5	1.4	0.9	0.3
CBH / CBV 215 C	155	270	0.8-1500	9.8	2.5	1.6	0.5
CBH / CBV 265 C	200	270	1.5-2000	16.6	4.0	2.4	0.6
CBH / CBV 335 C	270	280	1.8-2000	26.6	6.2	3.4	0.9
CBH / CBV 405 C	330	285	2.0-2000	34.1	8.5	4.3	1
CBR-V/H 175 C	311	265	0.8-1500	10.5	2.7	1.8	0.9
CBR-V/H 225 C	400	270	1.5-2000	18.3	4.5	2.8	1.2
CBR-V/H 295 C	525	275	1.8-2000	29.7	7.1	4.2	1.8
CBR-V / H 365 C	650	280	2.0-2000	38.4	11.3	6.7	2.4
CBR-V / H 426 C	980	285	2.4-2000	39.1	12.9	7.9	2.9
CBR-V/H 526 C	1220	295	3.0-2000	49.1	16.1	9.9	3.6
CBR-V / H 626 C	1460	305	3.5-2000	60.6	19.7	12	4.4
CBR-V/H 726 C	1700	310	4.0-2000	73.1	23.4	14.3	5.2

Construction and salient properties

- UL approved
- Compact dimensions
- Nominal power range from $110 \mathrm{~W}-1700 \mathrm{~W}$
- Energy levels from 9kJ-150kJ per case housing (5s duty, 120 s cycle), depending on ohmic value
- Aluminium case housing for high IP rating
- IP50-IP65
- Internal ceramic supported wirewound spirals for lower ohmic values
- Internal mica supported wirewound elements for higher ohmic values
- Nickel-Chrome 8020 alloy for low thermal drift
- Mica insulated for high dielectric strength
- $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2} filled for high thermal capacity/ high power overload capability
- Low surface temperature
- Low noise level
- High vibration withstand capability
- Thermal relief expansion mounting feet
- Optional thermal switch or PT100 element for thermal protection
- Cable (AWG 18-AWG10) or box connection up to $10 \mathrm{~mm}^{2}$
- Customized to your needs and application (OEM versions available)

CBH / CBV / CBR cable connections IP54
with internal thermal switch

$\begin{gathered} \text { CBH/CBV } \\ \text { CBR-V/CBR-H } \\ \text { with Thermal switch } \end{gathered}$	Pn [W] @ $40^{\circ} \mathrm{C}$ According UL508	max temp $\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{gathered} \mathrm{R}[\Omega] \\ \min -\max \end{gathered}$	Pulse load [kW] T. Amb $=40^{\circ} \mathrm{C}$ each $120 \mathrm{~s}^{*}$			
				duty 1 second [kW]	duty 5 second [kW]	duty 10 second [kW]	$\left\|\begin{array}{cc} \text { duty } 40 \\ \text { second }[\mathrm{kW}] \end{array}\right\|$
CBH / CBV $190 \times$ T	85	210	0.5-1000	5	1.4	0.9	0.3
CBH / CBV $240 \times T$	120	215	0.8-1500	9.8	2.5	1.5	0.4
CBH / CBV $290 \times$ T	150	220	1.5-2000	16.6	3.8	1.9	0.5
CBH / CBV $360 \times T$	200	225	1.8-2000	25.6	5.2	2.6	0.7
CBH / CBV $430 \times T$	250	230	2.0-2000	32.5	6.5	3.2	0.8
CBR-V / H $160 \times T$	280	210	0.5-1000	5.4	1.5	1	0.5
CBR-V / H $210 \times T$	360	210	0.8-1500	10.6	2.8	1.8	0.9
CBR-V / H $260 \times T$	450	225	1.5-2000	18.4	4.6	2.8	1.3
CBR-V / H $330 \times T$	570	230	1.8-2000	30	7.1	4.2	1.7
CBR-V / H $400 \times T$	680	230	2.0-2000	38.8	11.4	6.8	2.1
CBR-V / H $460 \times T$	790	240	2.4-2000	39.4	12.9	8	2.4
CBR-V / H $560 \times T$	960	250	3.0-2000	49.4	16.2	10	3.1
CBR-V / H $660 \times T$	1130	260	3.5-2000	60.6	19.7	12.1	3.8
CBR-V / H $760 \times T$	1290	260	4.0-2000	73.8	23.3	14.2	4.3

CBR K-box connection IP00

$\begin{gathered} \mathrm{CBH} / \mathrm{CBV} \\ \text { CBR-V/CBR-H } \end{gathered}$	$\mathrm{Pn}[\mathrm{W}] @ 40^{\circ} \mathrm{C}$	max temp $\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{gathered} R[\Omega] \\ \min -\max \end{gathered}$	Pulse load [kW] T. Amb $=40^{\circ} \mathrm{C}$ each $120 \mathrm{~s}^{*}$			
				duty 1 second [KW]	duty 5 second [kW]	duty 10 second [kW]	duty 40 second [kW]
CBR-V 175 K	235	210	0.8-1500	10.5	2.7	1.8	0.8
CBR-V 225 K	305	215	1.5-2000	18.3	4.5	2.8	1.1
CBR-V 295 K	400	220	1.8-2000	29.7	7.1	4.2	1.5
CBR-V 365 K	495	225	2.0-2000	38.4	11.3	6.7	1.9
CBR-V 426 K	750	230	2.4-40	39.1	12.9	7.9	2.3
CBR-V 526 K	930	235	3.045	49.1	16.1	9.9	2.9
CBR-V 626 K	1100	240	3.5-50	60.6	19.7	12	3.6
CBR-V 726 K	1300	250	4.0-55	73.1	23.4	14.3	4.3

* Pulse ratings for short pulses depend on the ohm value. Resistors with lower resistance value have more wire than resistors with higher resistance values. The ratings in this table refer to resistors of about 40R.

General specifications

Temperature Coefficient:		$100 \mathrm{ppm} / \mathrm{K}$
Dielectric strength		3500 VAC @ 1 minute
Isolation Resistance		> $20 \mathrm{M} \Omega$ / case housing
Overload: 1 sec pulse / hour		40-120x (depending on resistor)
Overload: 5 sec pulse / hour		10-27x (depending on resistor)
Environmental:		$-40^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
De-rating cable version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.85$ * Pn
De-rating TW $200^{\circ} \mathrm{C}$ version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.65{ }^{*} \mathrm{Pn}$
De-rating vertical mounting		no de-rating
De-rating horizontal mounting		0.8 * Pn
De-rating at high altitudes	1000 m	no de-rating
	1500 m	0.94 * Pn
	3000 m	0.82 * Pn
Mounting instructions		It is recommended to keep a distance of 200 mm to the nearest object to prevent heating of a neighboring component
		If two or more brake resistors are mounted next to each other the distance between these should be 400 mm . If this is less then the nominal power needs to be de-rated.
Cooling		The nominal power of the resistors refers to cooling conditions with Free Natural Air Cooling.
Vibration		Acc. To EN 60068-2-6 frequency range $1-100 \mathrm{~Hz}$ Acceleration / Amplitude
	$1-13 \mathrm{~Hz}$	$\pm 1 \mathrm{~mm}$
	$13-100 \mathrm{~Hz}$	@ $\pm 0.7 \mathrm{G}$
Corrosive resistance		Acc. IEC 60721-3-3/3K3 (C2 medium) 200 hours cyclic salt mist IEC 60068-2-52
Connection recommendations		To minimize EMC interference screened cables are recommended. in particular with any PWM brake pattern.
Resistance tolerance		$\pm 10 \%$ (optional 5\%)
Working voltage	Standard	UL: 600VAC. IEC: 690VAC / 1100VDC
	On request	UL: 1000 VAC . IEC: $1000 \mathrm{VAC} / 1400 \mathrm{VDC}$
Time constant for heating up resistor		1000 s
Thermal switch (optional)	Thermal switch	$130 / 160 / 180 / 200^{\circ} \mathrm{C} .2 \mathrm{~A} .250$ VAC NC
Minimum voltage		2 V
Minimum current		10 mA
Rated current / voltage		$2.5 \mathrm{~A} @ 250 \mathrm{VAC} \cos \phi=1$
Dielectric voltage		2000VAC (3500VAC between TS and R)
Temperature requirements on cables	IP 21	$80^{\circ} \mathrm{C}$
	IP 65	$90^{\circ} \mathrm{C}$

Connection boxes, only CBR types (optional)

connection boxes	IP rating	cable gland	clamping	braid (min.)	connection	TS gland	clamping	connection
			$[\mathrm{mm}]$	$[\mathrm{mm}]$	$\left[\mathrm{mm}^{2}\right]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$\left[\mathrm{mm}^{2}\right]$
B-box	IP65	M 25	$9-16.6$	7.5	$0.75-10$	M 12	$3-7$	$0.5-4$
D-box	IP21	M 25	$9-16.6$	7.5	$0.75-10$	M 12	$3-7$	$0.5-4$
K-box	IPOO	-	-	-	$0.75-10$	-	-	$0.5-4^{\star}$

*TS with K-box optional

B-box

D-box

K-box

CBH / CBV Cable cable connection IP54

Type	$\mathrm{L} \pm 2$	$\mathrm{~L} 1 \pm 2$	Weight
	$\pm 2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	kg
$\mathrm{CBH} / \mathrm{CBV} 165 \mathrm{C} \mathrm{800}$	165	146	0.39
$\mathrm{CBH} / \mathrm{CBV} 215 \mathrm{C} \mathrm{800}$	215	196	0.63
$\mathrm{CBH} / \mathrm{CBV} 265 \mathrm{C} \mathrm{800}$	265	246	0.88
$\mathrm{CBH} / \mathrm{CBV} 335 \mathrm{C} \mathrm{800}$	335	316	1.2
$\mathrm{CBH} / \mathrm{CBV} 405 \mathrm{C} \mathrm{800}$	405	386	1.5

CBH/CBV cable connections IP54
with internal thermal switch

Type	L	L1	Weight
	$\pm 2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	kg
$\mathrm{CBH} / \mathrm{CBV} 190 \mathrm{CT} 800$	190	171	0.5
$\mathrm{CBH} / \mathrm{CBV} 240 \mathrm{CT} 800$	240	221	0.71
$\mathrm{CBH} / \mathrm{CBV} 290 \mathrm{CT} 800$	290	271	0.97
$\mathrm{CBH} / \mathrm{CBV} 360 \mathrm{CT} 800$	360	341	1.3
$\mathrm{CBH} / \mathrm{CBV} 430 \mathrm{CT} 800$	430	411	1.6

Mechanical drawings

Cable connections IP54 CBR-V ... C ...

Cable connections IP54 - with internal thermal switch CBR-V ... CT...

B-box connection IP54 - with internal thermal switch CBR-V ... BT...

Cable connection type IP65 ' W ' with or without internal thermal switch CBR-V ... W

$-H /-V$ $W(T)$	L	$L 1$	Weight
	$\pm 2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	kg
CBR-H/CBR-V 160 WX 081	160	70	1.5
CBR-H/CBR-V 210 WX 081	210	110	1.8
CBR-H/CBR-V 260 WX 081	260	160	2.1
CBR-H/CBR-V 330 WX 081	330	230	2.6
CBR-H/CBR-V 400 WX 081	400	300	3.1
CBR-H/CBR-V 460 WX 081	460	360	3.5
CBR-H/CBR-V 560 WX 081	560	460	4.1
CBR-H/CBR-V 660 WX 081	660	560	4.8
CBR-H/CBR-V 760 WX 081	760	660	5.5

Box connection IP20/IP21 - with internal thermal switch CBR-V ... D.

Type	L	L 1	Weight
	$\pm 2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	kg
CBR-V 160 D T 281	160	70	1.3
CBR-V 210 D T 281	210	110	1.8
CBR-V 260 D T 281	260	160	2.4
CBR-V 330 D T 281	330	230	3.0
CBR-V 400 D T 281	400	300	3.5
CBR-V 460 D T 281	460	360	3.9
CBR-V 560 D T 281	560	460	4.6
CBR-V 660 D T 281	660	560	5.4
CBR-V 760 D T 281	760	660	6.1

Box connection IP00 CBR-V ... K...

Type	L	L1	Weight
	$\pm 2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$	kg
CBR-V 175 K 201	175	75	1.3
CBR-V 225 K 201	225	125	1.8
CBR-V 295 K 201	295	195	2.4
CBR-V 365 K 201	365	265	3.0
CBR-V 426 K 201	426	326	3.5
CBR-V 526 K 201	526	426	3.9
CBR-V 626 K 201	626	526	4.6
CBR-V 726 K 201	726	626	5.4

Overview of the ALPHA resistor family (IP00-IP65)

Power: $60-410 \mathrm{~W}$	Power: $85 \mathrm{~W}-1.7 \mathrm{~kW}$	Power: $410 \mathrm{~W}-12 \mathrm{~kW}$	Power: $445 \mathrm{~W}-15 \mathrm{~kW}$	Power: $860 \mathrm{~W}-25 \mathrm{~kW}$	
	$9-150 \mathrm{~kJ} @ 5 \mathrm{~s}$	$25-550 \mathrm{~kJ} @ 5 \mathrm{~s}$	$80 \mathrm{~kJ}-2.5 \mathrm{MJ} @ 5 \mathrm{~s}$	$6.4 \mathrm{~kJ}-1.1 \mathrm{MJ} @ 5 \mathrm{~s}$	
- Applications	Charge / Discharge	High Pulse load	High Pulse load	High Pulse load	
Brake	Brake	Brake	Brake	Short recovery time	
Filter	Filter	Filter	Medium voltage	Filter	
	Charge / Discharge	Charge / Discharge	Charge / Discharge	High Pulse load	

Other resistor types from Danotherm (IP00-IP66)

Multi purpurse	Outdoor \& Marine	Filter	Medium \& High voltage	Filter \& load
Power: $100 \mathrm{~W}-5 \mathrm{~kW}$	Power: $1-500 \mathrm{~kW}$	Power: $4-200 \mathrm{~kW}$	Power: 500 W ->	Power: $5 \mathrm{~kW}-1 \mathrm{MW}$
Ceramic wirewound	Steel tube	Wirewound	Steel grid	Steel tube

[^0]
ロRNOTHERM

- Brake resistors

- General-purpose applications; High pulse load applications
- Compact Construction; small dimensions
- Fully insulated; no external live parts
- High IP Classes
- Low thermal drift, 100ppm
- Fail Safe capabilities on request
- Low noise
- Thermal models for all types available on request
- Resistor components are UL approved

CCH with and without thermal switch

Pn W @ $40^{\circ} \mathrm{C}$ According UL508								
$\begin{gathered} \mathrm{CAH} / \mathrm{CAV} \\ \mathrm{CAR} \end{gathered}$	$P_{n} \mathrm{~W} @ 40^{\circ} \mathrm{C}$ According UL508	$\begin{array}{\|c} \text { max temp. } \\ { }^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} R \Omega \\ \min -\max \end{gathered}$	Pulse load W T. amb. $=40^{\circ} \mathrm{C}$ each 120 s				
				duty 1 second W	duty 5 second W	duty 10 second W	duty 20 second W	duty 40 second W
CCH 110	100	260	2-1000	2500	1150	800	540	295
CCH 166	160	265	4-1200	5700	2380	1600	930	470
CCH 216	200	275	6-1500	10500	3760	2350	1180	590
CCH 270	260	280	9-1700	14200	5050	3080	1540	770
CCH 320	300	285	10-2000	18600	6320	3550	1780	890
CCH 420	390	295	13-2000	24700	8390	4590	2290	1160
CCH 520	480	305	16-2000	30300	9710	5760	2880	1440
CCH 620	570	315	20-2000	38100	11900	6890	3440	1720
CCH with internal thermal switch								
CCH 145 CT	80	210	2-1000	2540	1210	850	580	345
CCH 201 CT	120	215	4-1200	5780	2480	1690	920	460
CCH 251 CT	160	220	6-1500	10600	3940	2280	1140	570
CCH 305 CT	200	225	9-1700	14500	5220	2820	1410	700
CCH 355 CT	230	230	10-2000	19100	6550	3280	1640	820
CCH 455 CT	300	235	13-2000	25300	8310	4150	2080	1040
CCH 555 CT	370	245	16-2000	30900	10000	5170	2590	1290
CCH 655 CT	440	250	20-2000	38800	11800	5900	2950	1500

Construction and salient properties

- UL approved
- Compact dimensions
- Nominal power range from $80 \mathrm{~W}-440 \mathrm{~W}$
- Energy levels from 6kJ-60J (5s duty, 120s cycle), depending on ohmic value
- Aluminium case housing for high IP rating
- IP50-IP65
- Nickel-Chrome 8020 alloy for low thermal drift
- Mica insulated for high dielectric strength
- $\quad \mathrm{MgO}$ or SiO_{2} filled for high thermal capacity/ high power overload capability
- Low surface temperature
- Low noise level
- High vibration withstand capability
- Thermal relief expansion mounting feet (CAR type)
- Optional thermal switch or PT100 element for thermal protection
- Cable (AWG 18-AWG10) or box connection up to $10 \mathrm{~mm}^{2}$
- Customized to your needs and application (OEM versions available)

CAH/CAV/CAR cable connection

Pn W @ 40 ${ }^{\circ} \mathrm{C}$ According UL508								
CAH/CAV CAR	$P_{n} W @ 40^{\circ} \mathrm{C}$ According UL508	$\begin{aligned} & \max \\ & \text { temp. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} R \\ \min -\max \\ \Omega \end{gathered}$	Pulse load $\mathrm{kW} \mathrm{T} \mathrm{amb}=.40^{\circ} \mathrm{C}$ each 120 s				
				duty 1 second W	duty 5 second W	$\begin{gathered} \text { duty } 10 \\ \text { second } \\ W \end{gathered}$	$\begin{gathered} \text { duty } 20 \\ \text { second } \\ \text { W } \end{gathered}$	$\begin{gathered} \hline \text { duty } 40 \\ \text { second } \\ W \end{gathered}$
CAH / CAV 120 C	70	260	0.15-300	1070	410	320	240	170
CAH / CAV 150 C	90	260	0.3-600	2420	820	600	435	255
CAH / CAV 165 C	100	265	0.3-800	3630	1120	780	540	285
CAH / CAV 210 C	125	270	0.6-1200	7030	1800	1120	750	375
CAH / CAV 240 C	145	275	0.7-1500	9530	2350	1440	850	435
CAH / CAV 300 C	185	290	1-1200	12800	3150	1920	1100	550
CAH / CAV 360 C	220	305	1.2-2500	16700	4080	2460	1320	660
CAR 85 C	115	260	0.1-300	1090	420	330	250	180
CAR 115 C	150	265	0.25-600	2480	860	640	470	330
CAR 130 C	170	265	0.3-800	3750	1170	830	600	405
CAR 175 C	225	275	0.5-1200	7420	1910	1230	830	570
CAR 205 C	260	285	0.7-1400	10200	2540	1590	1050	700
CAR 265 C	335	300	1.0-2000	13800	3460	2140	1420	940
CAR 325 C	410	320	1.2-2500	18100	4460	2750	1810	1170

Cable and connection box

with and without thermal switch

Pn W @ 40 ${ }^{\circ} \mathrm{C}$ According UL508								
$\mathrm{CAH} / \mathrm{CAV}$ CAR	$P_{n} W @ 40^{\circ} \mathrm{C}$ According UL508	$\begin{gathered} \max \\ \operatorname{temp} . \\ { }^{\circ} \mathrm{C} \text { C } \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \min -\max \\ \Omega \end{gathered}$	Pulse load kW T. amb $=40^{\circ} \mathrm{C}$ each 12 s				
				duty 1 s second W	duty 5 s second W	duty 10 s second W	duty 20 s second W	duty 40 s second W
CAH / CAV 145 CT	60	210	0.15-300	1070	415	325	245	170
CAH / CAV 175 CT	75	210	0.3-600	2420	830	610	430	215
CAH / CAV 190 CT	80	215	0.3-800	3630	1120	780	460	235
CAH / CAV 235 CT	100	220	0.6-1200	7030	1810	1130	580	290
CAH / CAV 265 CT	110	220	0.7-1500	9530	2350	1340	670	335
CAH / CAV 325 CT	140	230	1-1200	12800	3180	1660	830	415
CAH / CAV 385 CT	165	235	1.2-2500	16700	3980	1990	1000	495
CAR $110 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	105	210	0.1-300	1090	425	335	260	185
CAR $140 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	135	210	0.25-600	2500	870	650	485	335
CAR $155 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	150	215	0.3-800	3750	1190	840	610	420
CAR $200 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	190	220	0.5-1200	7420	1940	1240	850	560
CAR $230 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	210	225	0.7-1400	10200	2560	1600	1060	630
CAR 290 CT/K/DT	265	235	1.0-2000	13800	3490	2150	1430	780
CAR $350 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	310	250	1.2-2500	18100	4500	2760	1810	930

Pulse ratings for short pulses depend on the ohm value. Resistors with lower resistance value have more wire than resistors with higher resistance values. The ratings in this table refer to resistors of about 40R.

General specifications

Temperature Coefficient:		$100 \mathrm{ppm} / \mathrm{K}$
Dielectric strength		3500 VAC @ 1 minute
Isolation Resistance:		> $20 \mathrm{M} \Omega$ / case housing
Overload:@1 sec pulse / hour		10-100 \times (depending on resistor)
Overload:@ 5 sec pulse / hour		4-25 \times (depending on resistor)
Environmental:		$-40^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
De-rating cable version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.85{ }^{*} \mathrm{Pn}$
De-rating TW $200^{\circ} \mathrm{C}$ version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.65{ }^{*} \mathrm{Pn}$
De-rating vertical mounting		no de-rating
De-rating horizontal mounting		0.8 * Pn
De-rating at high altitudes	1000 m	no de-rating
	1500 m	0.94 * Pn
	3000 m	0.82 * Pn
Mounting instructions		It is recommended to keep a distance of 200 mm to the nearest object to prevent heating of a neighboring component.
		If two or more brake resistors are mounted next to each other the distance between these should be 400 mm . If this is less then the nominal power needs to be de-rated.
Cooling		The nominal power of the resistors refers to cooling conditions with Free Natural Air Cooling.
Vibration		Acc. To EN 60068-2-6 frequency range $1-100 \mathrm{~Hz}$ Acceleration / Amplitude
	$1-13 \mathrm{~Hz}$	$\pm 1 \mathrm{~mm}$
	$13-100 \mathrm{~Hz}$	@ $\pm 0.7 \mathrm{G}$
Corrosive resistance		Acc. IEC 60721-3-3/3K3 (C2 medium) 200 hours cyclic salt mist IEC 60068-2-52
Connection recommendations		To minimize EMC interference screened cables are recommended. in particular with any PWM brake pattern.
Resistance tolerance		$\pm 10 \%$ (optional 5\%)
Working voltage		UL: 600VAC. IEC: 690VAC / 850VDC
Time constant for heating up resistor		$1000 s$
Thermal switch (optional)	Thermal switch	130/160/180/200 ${ }^{\circ} \mathrm{C} .2 \mathrm{~A} .250$ VAC NC
Minimum voltage		2 V
Minimum current		10 mA
Rated current / voltage		$\begin{gathered} 2.5 \mathrm{~A} @ 250 \mathrm{VAC} \cos \phi=1 \\ 2.5 \mathrm{~A} @ 24 \mathrm{VDC} \end{gathered}$
Dielectric voltage		2000VAC (3500VAC between TS and R)
Temperature requirements on cables	IP 21	$80^{\circ} \mathrm{C}$
	IP 65	$90^{\circ} \mathrm{C}$

CCH Cable version with thermal switch, IP54

CCH Cable version IP65, thermal switch IP65

CAR cable type

Type	L $\pm 2 \mathrm{~mm}$	L1 $\pm 2 \mathrm{~mm}$	Weight g
CAR 85 C	85	115	200
CAR 115 C	115	145	280
CAR 130 C	130	160	300
CAR 175 C	175	205	380
CAR 205 C	205	235	530
CAR 265 C	265	295	600
CAR 325 C	325	355	740
with thermal switch (T)			
CAR 110 CT	110	140	155
CAR 140 CT	140	170	230
CAR 155 CT	155	185	250
CAR 200 CT	200	230	335
CAR 230 CT	230	260	470
CAR 290 CT	290	320	550
CAR 350 CT	350	380	685

CAR K-Box
CAR Box type connection

CAR DT-Box

CAR Box type connection and thermal switch

Type	$\mathrm{L} \pm 2$ mm	$\mathrm{L1} \pm 2$ mm	Weight g
with connection box			
CAR 140 K/-DT	140	110	$510 / 720$
CAR 155 K/-DT	155	125	$540 / 760$
CAR 200 K/-DT	200	170	$610 / 810$
CAR 230 K/-DT	230	200	$760 / 960$
CAR 290 K/-DT	290	260	$860 / 1010$
CAR 350 K/-DT	350	320	$970 / 1160$

CAH 120 C

Connection boxes, only CAR types

connection boxes	IP rating	cable gland	clamping	braid (min.)	connection	Ts gland	clamping	connection
			mm	mm	mm^{2}	mm	mm	$\mathrm{~mm}^{2}$
D-box	IP21	M 25	$9-16.6$	7.5	$0.75-10$	M 12	$3-7$	$0.5-4$
K-box	IPOO	-	-	-	$0.75-10$	-	-	$0.5-4^{\star}$

D-box

KT-box

Overview of the ALPHA resistor family (IP00-IP65)

Power: $60-410 \mathrm{~W}$	Power: $85 \mathrm{~W}-1.7 \mathrm{~kW}$	Power: $410 \mathrm{~W}-12 \mathrm{~kW}$	Power: $445 \mathrm{~W}-15 \mathrm{~kW}$	Power: $860 \mathrm{~W}-25 \mathrm{~kW}$	
	$9-150 \mathrm{~kJ} \mathrm{@} 0 \mathrm{~s}$	$25-550 \mathrm{~kJ} @ 5 \mathrm{~s}$	$80 \mathrm{~kJ}-2.5 \mathrm{MJ} @ 5 \mathrm{~s}$	$6.4 \mathrm{~kJ}-1.1 \mathrm{MJ} @ 5 \mathrm{~s}$	
- Applications	Charge / Discharge	High Pulse load	High Pulse load	High Pulse load	
Brake	Brake	Brake	Brake	Brake recovery time	
Filter	Filter	Filter	Medium voltage	Filter	
	Charge / Discharge	Charge / Discharge	Charge / Discharge	High Pulse load	

Other resistor types from Danotherm (IP00-IP66)

Multi purpurse	Outdoor \& Marine	Filter	Medium \& High voltage	Filter \& load
Power: $100 \mathrm{~W}-5 \mathrm{~kW}$	Power: $1-500 \mathrm{~kW}$	Power: $4-200 \mathrm{~kW}$	Power: 500 W ->	Power: $5 \mathrm{~kW}-1 \mathrm{MW}$
Ceramic wirewound	Steel tube	Wirewound	Steel grid	Steel tube

CAR $400 \mathrm{C}(\mathrm{H})(\mathrm{T}) 28122 \mathrm{R}$
'281' digits > 400: Customer specific version, otherwise:

Ohm value (Example $2 \mathrm{R} 2=2.2 \Omega, 22 \mathrm{R}=22 \Omega$)
Number of case style housings
Thermal switch; $5=130^{\circ} \mathrm{C} / 6=160^{\circ} \mathrm{C} / 7=180^{\circ} \mathrm{C} / 8=200^{\circ} \mathrm{C}$
$0=$ cable connection, $2=$ connection box type
$\mathrm{T}=$ Thermal switch (normally closed) Wire element (H, TBD by Danotherm) Connection; $\mathrm{C}=$ no box / $\mathrm{K}=\mathrm{IP} 00 / \mathrm{D}=\mathrm{IP} 20$
Length of resistor housing in mm Housing style; CCH / CAH / CAV / CAR

Danotherm Electric A/S
Naesbyvej 20
DK-2610 Roedovre
Denmark
CVR 10126061
DAN EN 16.5026.R1
17MAY2017

ロRNOTHERM

- Brake resistors

- General-purpose applications; High pulse load applications
- Compact Construction; small dimensions
- Fully insulated; no external live parts
- High IP Classes
- Low thermal drift, 100ppm
- Fail Safe capabilities on request
- Low noise
- Thermal models for all types available on request
- Resistor components are UL approved

CCH with and without thermal switch

Pn W @ $40^{\circ} \mathrm{C}$ According UL508								
$\begin{gathered} \mathrm{CAH} / \mathrm{CAV} \\ \mathrm{CAR} \end{gathered}$	$P_{n} \mathrm{~W} @ 40^{\circ} \mathrm{C}$ According UL508	$\begin{array}{\|c} \text { max temp. } \\ { }^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} R \Omega \\ \min -\max \end{gathered}$	Pulse load W T. amb. $=40^{\circ} \mathrm{C}$ each 120 s				
				duty 1 second W	duty 5 second W	duty 10 second W	duty 20 second W	duty 40 second W
CCH 110	100	260	2-1000	2500	1150	800	540	295
CCH 166	160	265	4-1200	5700	2380	1600	930	470
CCH 216	200	275	6-1500	10500	3760	2350	1180	590
CCH 270	260	280	9-1700	14200	5050	3080	1540	770
CCH 320	300	285	10-2000	18600	6320	3550	1780	890
CCH 420	390	295	13-2000	24700	8390	4590	2290	1160
CCH 520	480	305	16-2000	30300	9710	5760	2880	1440
CCH 620	570	315	20-2000	38100	11900	6890	3440	1720
CCH with internal thermal switch								
CCH 145 CT	80	210	2-1000	2540	1210	850	580	345
CCH 201 CT	120	215	4-1200	5780	2480	1690	920	460
CCH 251 CT	160	220	6-1500	10600	3940	2280	1140	570
CCH 305 CT	200	225	9-1700	14500	5220	2820	1410	700
CCH 355 CT	230	230	10-2000	19100	6550	3280	1640	820
CCH 455 CT	300	235	13-2000	25300	8310	4150	2080	1040
CCH 555 CT	370	245	16-2000	30900	10000	5170	2590	1290
CCH 655 CT	440	250	20-2000	38800	11800	5900	2950	1500

Construction and salient properties

- UL approved
- Compact dimensions
- Nominal power range from $80 \mathrm{~W}-440 \mathrm{~W}$
- Energy levels from 6kJ-60J (5s duty, 120s cycle), depending on ohmic value
- Aluminium case housing for high IP rating
- IP50-IP65
- Nickel-Chrome 8020 alloy for low thermal drift
- Mica insulated for high dielectric strength
- $\quad \mathrm{MgO}$ or SiO_{2} filled for high thermal capacity/ high power overload capability
- Low surface temperature
- Low noise level
- High vibration withstand capability
- Thermal relief expansion mounting feet (CAR type)
- Optional thermal switch or PT100 element for thermal protection
- Cable (AWG 18-AWG10) or box connection up to $10 \mathrm{~mm}^{2}$
- Customized to your needs and application (OEM versions available)

CAH/CAV/CAR cable connection

Pn W @ 40 ${ }^{\circ} \mathrm{C}$ According UL508								
CAH/CAV CAR	$P_{n} W @ 40^{\circ} \mathrm{C}$ According UL508	$\begin{aligned} & \max \\ & \text { temp. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} R \\ \min -\max \\ \Omega \end{gathered}$	Pulse load $\mathrm{kW} \mathrm{T} \mathrm{amb}=.40^{\circ} \mathrm{C}$ each 120 s				
				duty 1 second W	duty 5 second W	$\begin{gathered} \text { duty } 10 \\ \text { second } \\ W \end{gathered}$	$\begin{gathered} \text { duty } 20 \\ \text { second } \\ \text { W } \end{gathered}$	$\begin{gathered} \hline \text { duty } 40 \\ \text { second } \\ W \end{gathered}$
CAH / CAV 120 C	70	260	0.15-300	1070	410	320	240	170
CAH / CAV 150 C	90	260	0.3-600	2420	820	600	435	255
CAH / CAV 165 C	100	265	0.3-800	3630	1120	780	540	285
CAH / CAV 210 C	125	270	0.6-1200	7030	1800	1120	750	375
CAH / CAV 240 C	145	275	0.7-1500	9530	2350	1440	850	435
CAH / CAV 300 C	185	290	1-1200	12800	3150	1920	1100	550
CAH / CAV 360 C	220	305	1.2-2500	16700	4080	2460	1320	660
CAR 85 C	115	260	0.1-300	1090	420	330	250	180
CAR 115 C	150	265	0.25-600	2480	860	640	470	330
CAR 130 C	170	265	0.3-800	3750	1170	830	600	405
CAR 175 C	225	275	0.5-1200	7420	1910	1230	830	570
CAR 205 C	260	285	0.7-1400	10200	2540	1590	1050	700
CAR 265 C	335	300	1.0-2000	13800	3460	2140	1420	940
CAR 325 C	410	320	1.2-2500	18100	4460	2750	1810	1170

Cable and connection box

with and without thermal switch

Pn W @ 40 ${ }^{\circ} \mathrm{C}$ According UL508								
$\mathrm{CAH} / \mathrm{CAV}$ CAR	$P_{n} W @ 40^{\circ} \mathrm{C}$ According UL508	$\begin{gathered} \max \\ \operatorname{temp} . \\ { }^{\circ} \mathrm{C} \text { C } \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \min -\max \\ \Omega \end{gathered}$	Pulse load kW T. amb $=40^{\circ} \mathrm{C}$ each 12 s				
				duty 1 s second W	duty 5 s second W	duty 10 s second W	duty 20 s second W	duty 40 s second W
CAH / CAV 145 CT	60	210	0.15-300	1070	415	325	245	170
CAH / CAV 175 CT	75	210	0.3-600	2420	830	610	430	215
CAH / CAV 190 CT	80	215	0.3-800	3630	1120	780	460	235
CAH / CAV 235 CT	100	220	0.6-1200	7030	1810	1130	580	290
CAH / CAV 265 CT	110	220	0.7-1500	9530	2350	1340	670	335
CAH / CAV 325 CT	140	230	1-1200	12800	3180	1660	830	415
CAH / CAV 385 CT	165	235	1.2-2500	16700	3980	1990	1000	495
CAR $110 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	105	210	0.1-300	1090	425	335	260	185
CAR $140 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	135	210	0.25-600	2500	870	650	485	335
CAR $155 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	150	215	0.3-800	3750	1190	840	610	420
CAR $200 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	190	220	0.5-1200	7420	1940	1240	850	560
CAR $230 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	210	225	0.7-1400	10200	2560	1600	1060	630
CAR 290 CT/K/DT	265	235	1.0-2000	13800	3490	2150	1430	780
CAR $350 \mathrm{CT} / \mathrm{K} / \mathrm{DT}$	310	250	1.2-2500	18100	4500	2760	1810	930

Pulse ratings for short pulses depend on the ohm value. Resistors with lower resistance value have more wire than resistors with higher resistance values. The ratings in this table refer to resistors of about 40R.

General specifications

Temperature Coefficient:		$100 \mathrm{ppm} / \mathrm{K}$
Dielectric strength		3500 VAC @ 1 minute
Isolation Resistance:		> $20 \mathrm{M} \Omega$ / case housing
Overload:@1 sec pulse / hour		10-100 \times (depending on resistor)
Overload:@ 5 sec pulse / hour		4-25 \times (depending on resistor)
Environmental:		$-40^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
De-rating cable version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.85{ }^{*} \mathrm{Pn}$
De-rating TW $200^{\circ} \mathrm{C}$ version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.65{ }^{*} \mathrm{Pn}$
De-rating vertical mounting		no de-rating
De-rating horizontal mounting		0.8 * Pn
De-rating at high altitudes	1000 m	no de-rating
	1500 m	0.94 * Pn
	3000 m	0.82 * Pn
Mounting instructions		It is recommended to keep a distance of 200 mm to the nearest object to prevent heating of a neighboring component.
		If two or more brake resistors are mounted next to each other the distance between these should be 400 mm . If this is less then the nominal power needs to be de-rated.
Cooling		The nominal power of the resistors refers to cooling conditions with Free Natural Air Cooling.
Vibration		Acc. To EN 60068-2-6 frequency range $1-100 \mathrm{~Hz}$ Acceleration / Amplitude
	$1-13 \mathrm{~Hz}$	$\pm 1 \mathrm{~mm}$
	$13-100 \mathrm{~Hz}$	@ $\pm 0.7 \mathrm{G}$
Corrosive resistance		Acc. IEC 60721-3-3/3K3 (C2 medium) 200 hours cyclic salt mist IEC 60068-2-52
Connection recommendations		To minimize EMC interference screened cables are recommended. in particular with any PWM brake pattern.
Resistance tolerance		$\pm 10 \%$ (optional 5\%)
Working voltage		UL: 600VAC. IEC: 690VAC / 850VDC
Time constant for heating up resistor		$1000 s$
Thermal switch (optional)	Thermal switch	130/160/180/200 ${ }^{\circ} \mathrm{C} .2 \mathrm{~A} .250$ VAC NC
Minimum voltage		2 V
Minimum current		10 mA
Rated current / voltage		$\begin{gathered} 2.5 \mathrm{~A} @ 250 \mathrm{VAC} \cos \phi=1 \\ 2.5 \mathrm{~A} @ 24 \mathrm{VDC} \end{gathered}$
Dielectric voltage		2000VAC (3500VAC between TS and R)
Temperature requirements on cables	IP 21	$80^{\circ} \mathrm{C}$
	IP 65	$90^{\circ} \mathrm{C}$

CCH Cable version with thermal switch, IP54

CCH Cable version IP65, thermal switch IP65

CAR cable type

Type	L $\pm 2 \mathrm{~mm}$	L1 $\pm 2 \mathrm{~mm}$	Weight g
CAR 85 C	85	115	200
CAR 115 C	115	145	280
CAR 130 C	130	160	300
CAR 175 C	175	205	380
CAR 205 C	205	235	530
CAR 265 C	265	295	600
CAR 325 C	325	355	740
with thermal switch (T)			
CAR 110 CT	110	140	155
CAR 140 CT	140	170	230
CAR 155 CT	155	185	250
CAR 200 CT	200	230	335
CAR 230 CT	230	260	470
CAR 290 CT	290	320	550
CAR 350 CT	350	380	685

CAR K-Box
CAR Box type connection

CAR DT-Box

CAR Box type connection and thermal switch

Type	$\mathrm{L} \pm 2$ mm	$\mathrm{L1} \pm 2$ mm	Weight g
with connection box			
CAR 140 K/-DT	140	110	$510 / 720$
CAR 155 K/-DT	155	125	$540 / 760$
CAR 200 K/-DT	200	170	$610 / 810$
CAR 230 K/-DT	230	200	$760 / 960$
CAR 290 K/-DT	290	260	$860 / 1010$
CAR 350 K/-DT	350	320	$970 / 1160$

CAH 120 C

Connection boxes, only CAR types

connection boxes	IP rating	cable gland	clamping	braid (min.)	connection	Ts gland	clamping	connection
			mm	mm	mm^{2}	mm	mm	$\mathrm{~mm}^{2}$
D-box	IP21	M 25	$9-16.6$	7.5	$0.75-10$	M 12	$3-7$	$0.5-4$
K-box	IPOO	-	-	-	$0.75-10$	-	-	$0.5-4^{\star}$

D-box

KT-box

Overview of the ALPHA resistor family (IP00-IP65)

Power: $60-410 \mathrm{~W}$	Power: $85 \mathrm{~W}-1.7 \mathrm{~kW}$	Power: $410 \mathrm{~W}-12 \mathrm{~kW}$	Power: $445 \mathrm{~W}-15 \mathrm{~kW}$	Power: $860 \mathrm{~W}-25 \mathrm{~kW}$	
	$9-150 \mathrm{~kJ} \mathrm{@} 0 \mathrm{~s}$	$25-550 \mathrm{~kJ} @ 5 \mathrm{~s}$	$80 \mathrm{~kJ}-2.5 \mathrm{MJ} @ 5 \mathrm{~s}$	$6.4 \mathrm{~kJ}-1.1 \mathrm{MJ} @ 5 \mathrm{~s}$	
- Applications	Charge / Discharge	High Pulse load	High Pulse load	High Pulse load	
Brake	Brake	Brake	Brake	Brake recovery time	
Filter	Filter	Filter	Medium voltage	Filter	
	Charge / Discharge	Charge / Discharge	Charge / Discharge	High Pulse load	

Other resistor types from Danotherm (IP00-IP66)

Multi purpurse	Outdoor \& Marine	Filter	Medium \& High voltage	Filter \& load
Power: $100 \mathrm{~W}-5 \mathrm{~kW}$	Power: $1-500 \mathrm{~kW}$	Power: $4-200 \mathrm{~kW}$	Power: 500 W ->	Power: $5 \mathrm{~kW}-1 \mathrm{MW}$
Ceramic wirewound	Steel tube	Wirewound	Steel grid	Steel tube

CAR $400 \mathrm{C}(\mathrm{H})(\mathrm{T}) 28122 \mathrm{R}$
'281' digits > 400: Customer specific version, otherwise:

Ohm value (Example $2 \mathrm{R} 2=2.2 \Omega, 22 \mathrm{R}=22 \Omega$)
Number of case style housings
Thermal switch; $5=130^{\circ} \mathrm{C} / 6=160^{\circ} \mathrm{C} / 7=180^{\circ} \mathrm{C} / 8=200^{\circ} \mathrm{C}$
$0=$ cable connection, $2=$ connection box type
$\mathrm{T}=$ Thermal switch (normally closed) Wire element (H, TBD by Danotherm) Connection; $\mathrm{C}=$ no box / $\mathrm{K}=\mathrm{IP} 00 / \mathrm{D}=\mathrm{IP} 20$
Length of resistor housing in mm Housing style; CCH / CAH / CAV / CAR

Danotherm Electric A/S
Naesbyvej 20
DK-2610 Roedovre
Denmark
CVR 10126061
DAN EN 16.5026.R1
17MAY2017

DRNOTHERM

CBS / CMQ / CVS (1000v)
 HVBS (3000V)

- High Energy Dump resistors
- High pulse load applications
- Compact Construction; small dimensions
- Fully insulated; no external live parts
- High IP Classes
- Low thermal drift, 100ppm
- Low noise
- Thermal models for all types available on request
- Resistor components are UL approved / pending

In this brochure the standard overview of four different aluminium case style resistors is given.
Selecting the correct resistor type and options involves many considerations. Danotherm would very much like to support your choise. Together we can select the optimum resistor where all technical and commercial aspects are reviewed. Customer specific request for OEM solutions are very well possible, giving you an attractive solution.

Please, consult Danotherm. Our goal is to be a part of your success.

CBS / CMQ / CVS - 1000VAC/1400VDC

HVBS - 3000VAC/4200VDC

HVBS-CH-XXX	Pn [W] @ $40^{\circ} \mathrm{C}$ According UL508	$\begin{gathered} \mathrm{R}[\Omega] \\ \min -\max \\ \pm 10 \% \end{gathered}$	double housings	triple housings	quadruple housings
HVBS 300	850	0.05-30	1500		
HVBS 370	1050	0.07-50	1800		
HVBS 440	1250	0.09-70	2100	2900	3500
HVBS 520	1365	0.10-90	2500	3700	5000
HVBS 620	1950	0.13-110	3200	4800	6400
HVBS 720	2500	0.15-140	3600	5400	7200
HVBS 820	2900	0.19-170	4800	7100	9600
HVBS 920	3200	0.22-200	5300	7900	10600
HVBS 1000	3500	0.25-220	6000	8800	12000

Temperature Coefficient:		$100 \mathrm{ppm} / \mathrm{K}$
Dielectric strength	HVBS	7000VAC @ 1 minute
	Other types	3500 VAC @ 1 minute
Insulation Resistance:		$>20 \mathrm{M} \Omega$ / case housing
Overload: 1 sec pulse / hour		70-250 \times (depending on resistor)
Overload:@ 5 sec pulse / hour		20-60 \times (depending on resistor)
Environmental:		$-40^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
De-rating cable version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.85{ }^{*} \mathrm{Pn}$
De-rating TW $200^{\circ} \mathrm{C}$ version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.65{ }^{*} \mathrm{Pn}$
De-rating vertical mounting		no de-rating
De-rating horizontal mounting		0.8 * Pn
De-rating at high altitudes	1000 m	no de-rating
	1500 m	0.94 * Pn
	3000 m	0.82 * Pn
Mounting instructions		It is recommended to keep a distance of 200 mm to the nearest object to prevent heating of neighbouring components.
		If two or more brake resistors are mounted next to each other the distance between these should be 400 mm . If this is less then the nominal power needs to be de-rated
Cooling		The nominal power of the resistors refers to cooling conditions with Free Natural Air Cooling.
Vibration		Acc. To EN 60068-2-6 frequency range $1-100 \mathrm{~Hz}$ Acceleration / Amplitude
	$1-13 \mathrm{~Hz}$	$\pm 1 \mathrm{~mm}$
	$13-100 \mathrm{~Hz}$	$@ \pm 0.7 \mathrm{G}$
Corrosive resistance		Acc. IEC 60721-3-3/3K3 (C2 medium) 200 hours cyclic salt mist IEC 60068-2-52
Connection recommendations		To minimize EMC interference screened cables are recommended. in particular with PWM brake pattern.
Resistance tolerance		$\pm 10 \%$ (optional 5\%)
Working voltage CBS / CMQ / CVS	Cable version	UL: 1000 VAC . IEC: $1000 \mathrm{VAC} / 1400 \mathrm{VDC}$
	Conn. Box	UL: 600VAC. IEC: 690VAC / 1100VDC
Working voltage HVBS	Cable version	IEC: 3000VAC / 4200VDC
Time constant for heating up resistor		1000-3000s
Thermal switch *	Thermal switch	$130 / 160 / 180 / 200^{\circ} \mathrm{C} .2 .5 \mathrm{~A} .250$ VAC NC
Minimum measuring voltage		2 V
Minimum measuring current		10 mA
Rated current / voltage		$2.5 \mathrm{~A} @ 250 \mathrm{VAC} \cos \phi=1$
Dielectric voltage		2000VAC (3500VAC between TS and R)
Temperature requirements on cables	IP 21	$80^{\circ} \mathrm{C}$
	IP 65	$90^{\circ} \mathrm{C}$

[^1]- Compact dimensions
- Nominal power range from 455 W 4070W
- Energy levels from $80 \mathrm{~kJ}-2.5 \mathrm{MJ}$ per case housing (5 s single pulse), depending on ohmic value
- Aluminium case housing for high IP rating
- IP50-IP65
- Internal ceramic supported wirewound spirals for lower ohmic values
- Nickel-Chrome 8020 alloy for low thermal drift
- Mica insulated for high dielectric strength
- $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2} filled for high thermal capacity/high power overload capability
- Low surface temperature
- Low noise level
- High vibration withstand capability
- Thermal relief expansion mounting feet
- Optionally thermal switch or PT100 element for thermal protection guard.
- Cable (AWG 10-AWG4) or box connection up to $50 \mathrm{~mm}^{2}$
- Multiple case housings (from 2-4 housings)
- Customized to your needs and application (OEM versions available)

Single-body

Multiple-housings

connection boxes	IP rating	cable gland	clamping range $[\mathrm{mm}]$	braid diameter (min). $[\mathrm{mm}]$	elec. connection $\left[\mathrm{mm}^{2}\right]$
B-box (single housing)	IP65	M 25	$9-16.6$	7.5	$0.75-10$
D-box	IP21	M25	$9-16.6$	7.5	$0.75-10$
G-box	IP21	M40	$19-28$	15	$2.5-50$
B-box (multiple housings)	IP65	M32	$11-21$	9	$2.5-50$
B-box (multiple housings)	IP65	M40	$19-28$	15	$2.5-50$
thermal switch (optional)	-	M12	$3-7$	-	$0.5-4$

Cable connection type IP50 CBS / CMQ / CVS -H ..C..

Length/type	CBS		CMQ		CVS	
$\begin{gathered} \mathrm{L} \pm 2 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 5 \mathrm{~s} \mathrm{load*} \\ \mathrm{~kW} \end{gathered}$	Weight kg	5 s load* kW	Weight kg	5s load* kW	Weight kg
210 CH 00122 R	16	3.6	23	5.2	-	-
260 CH 00118 R	27	4.5	46	6.5	-	-
330 CH 001 13R	45	5.7	71	8.3	-	-
400 CH 001 10R	68	7.0	120	10.3	135	12.3
460 CH 0016 R 5	92	8.2	150	12.0	190	14.5
560 CH 0016 RO	120	10.0	210	14.9	265	17.9
660 CH 001 4R5	160	12.0	260	17.7	340	21.4
760 CH 001 3R5	205	14.2	350	20.2	440	25.2
860 CH 001 2R5	185	16.3	350	23.0	500	28.7
960 CH 001 2RO	255	17.6	460	26.3	510	31.6
housing case dimensions						
Type	H		$\mathrm{W} \pm$	1	W1	± 1
CBS	47		21		23	0
CMQ	50		29		30	
HVBS	50		29		30	4
CVS	60		29		30	

* Pulse rating depends on resistance value

Cable connection type IP50 HVBS -H ... CH... (3000VAC)

$L \pm 2$ $m m$	5s load* $k W$	Weight $k g$
HVBS 300 CH 001 15R	22.4	7.5
HVBS 370 CH 001 12R	41.3	9.3
HVBS 440 CH 001 10R	66	11.3
HVBS 520 CH 001 8R0	81	13.5
HVBS 620 CH 001 6RO	120	16.5
HVBS 720 CH 001 5R0	155	19.3
HVBS 820 CH 001 4R0	185	21.8
HVBS 920 CH 001 3R5	270	24.6
HVBS 1000 CH 001 3R0	300	27.4

* Pulse rating depends on resistance value

CBS Double housings, connection B-Box type,

$L \pm 2$ $m m$	5s load* kW	Weight $k g$
CBS 210 BGH 202 11R	32	9.2
CBS 260 BGH 202 9RO	54	11.0
CBS 330 BGH 202 6R5	90	13.4
CBS 400 BGH 202 5RO	136	16.0
CBS 460 BGH 202 3R3	184	18.4
CBS 560 BGH 202 3RO	240	22.0
CBS 660 BGH 202 2R3	320	26.0
CBS 760 BGH 202 1R8	410	30.4
CBS 860 BGH 202 1R3	510	34.6
CBS 960 BGH 202 1RO	510	37.2

CMQ Double housings, connection B-Box type, IP54-IP65

$\begin{gathered} \mathrm{L} \pm 2 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 5 \mathrm{~s} \text { load* } \\ \mathrm{kW} \end{gathered}$	Weight kg
CMQ $210 \mathrm{BHT} 2 \times 2$ 11R	46	12.4
CMQ 260 BHT 2×2 9RO	92	15.0
CMQ $330 \mathrm{BHT} 2 \times 26 \mathrm{R} 5$	142	18.6
CMQ 400 BHT $2 \times 25 \mathrm{RO}$	240	22.6
CMQ $460 \mathrm{BHT} 2 \times 23 \mathrm{R} 3$	300	26.0
CMQ 560 BHT 2×2 3RO	420	31.8
CMQ 660 BHT 2×2 2R3	520	37.4
CMQ 760 BHT 2×21 R 8	700	42.4
CMQ 860 BHT 2×21 R3	700	48.0
CMQ 960 BHT 2×21 RO	920	55

CBS Triple housings, cable type, IP50

$L \pm 2$ $m m$	5s load* kW	Weight kg
CBS 210 CH 003 7R3	48	11.8
CBS 260 CH 003 6R0	81	14.5
CBS 330 CH 003 4R3	135	18.1
CBS 400 CH 003 3R3	204	22.0
CBS 460 CH 003 2R2	276	25.6
CBS 560 CH 003 3R0	360	31.0
CBS 660 CH 003 1R5	480	37.0
CBS 760 CH 003 1R2	615	43.6
CBS 860 CH 003 0R8	555	50
CBS 960 CH 003 0R7	765	54

$L \pm 2$ mm	5s load* kW	Weight kg
CMQ 210 KH 203 7R3	69	11.8
CMQ 260 KH 203 6RO	138	14.5
CMQ 330 KH 203 4R3	213	18.1
CMQ 400 KH 203 3R3	360	22.0
CMQ 460 KH 203 2R2	450	25.6
CMQ 560 KH 203 3RO	630	31.0
CMQ 660 KH 203 1R5	780	37.0
CMQ 760 KH 203 1R2	1000	43.6
CMQ 860 KH 203 OR8	1000	49.9
CMQ 960 KH 203 OR7	1380	53.8

CMQ Quadruple housings, connection B-Box type, IP54

$L \pm 2$ mm	5s load* kW	Weight kg
CMQ 210 BHT 2×4 7R3	92	17.4
CMQ 260 BHT 2×4 6RO	180	21.0
CMQ 330 BHT 2×4 4R3	284	25.8
CMQ 400 BHT 2×4 3R3	480	31.0
CMQ 460 BHT 2×4 2R2	600	35.8
CMQ 560 BHT 2×4 3R0	840	43.0
CMQ 660 BHT 2×4 1R5	1000	51
CMQ 760 BHT 2×4 1R2	1400	60
CMQ 860 BHT 2×4 OR8	1400	68.
CMQ 960 BHT 2×4 OR7	1800	73

CBS Single to Quadruple housings 420/520mm, DIN rail terminals K-type, IP00

$\begin{gathered} \mathrm{L} \pm 2 \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \text { No. } \\ & \text { cases } \end{aligned}$	$\begin{gathered} \mathrm{L} \pm 2 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	Weight kg
CBS-H 420 KH 201 xxR	1	420	160	13.0
CBS-H 520 KH 201 xxR	1	520	160	13.5
CBS-H 420 KH 202 xxR	2	420	160	20.5
CBS-H 520 KH 202 xxR	2	520	160	22.5
CBS-H 420 KH 203 XxR	3	420	300	32.5
CBS-H 520 KH 203 xxR	3	520	300	34.5
CBS-H 420 KH 204 xxR	4	420	300	40.5
CBS-H 520 KH 204 xxR	4	520	300	42.5

All above tables are showing standard lengths. Customer specified lengths are available.

Standard and OEM examples

CMQ / HVBS type with cable leads, IP50

CMQ type with long connection box, IP54

Double CMQ type with DIN rail terminals, IPOO

Quadruple CMQ type with DIN rail terminals, IPOO

Double CMQ type with connection box, IP54

Quadruple CMQ type with connection box, IP54

CMQ types with B-box IP54, quadruple, triple and double housings
2 cable glands M25 for resistor connection, 1 cable gland M12 for thermal switch

CBS	One single square pulse each 1800 seconds							
	Duty 5s [kW]	Max surface temp.	Duty 10 s [kW]	Max surface temp.	Duty 20 s [kW]	Max surface temp.	Duty 40 [kW]	Max surface temp.
CBS 210 22R	16	45	11	70	7.6	85	5.5	100
CBS 26018 R	27	65	19	75	13.1	90	9.5	120
CBS 33013 R	45	60	31	85	21.3	100	15.5	130
CBS 400 10R	68	70	44	90	31	110	21.6	140
CBS 460 6R5	92	85	59	100	40	120	28	150
CBS 5606 RO	120	85	77	100	52	120	36	150
CBS 660 4R5	160	70	100	110	66	130	46	160
CBS 760 3R5	205	95	125	110	83	130	56	170
CBS 860 2R5	255	85	155	120	100	140	67	170
CBS 960 2RO	250	95	160	110	105	140	73	170
One single triangle pulse each 1800 seconds								
	Duty 5s Max surface [kW] temp.		Duty 10 s Max surface [kW] temp.		Duty 20 s Max surface [kW] temp.		Duty 40s Max surface [kW] temp.	
CBS 210 22R	34	65	23	75	16	85	11.4	110
CBS 26018 R	57	70	40	80	27	95	20	120
CBS 33013 R	96	75	64	85	44	100	32	130
CBS 400 10R	145	80	95	95	64	110	45	140
CBS 460 6R5	195	90	125	100	83	120	57	150
CBS 5606 RO	255	90	160	100	110	120	75	160
CBS 660 4R5	340	95	215	110	140	130	95	170
CBS 760 3R5	440	100	270	120	175	140	120	170
CBS 860 2R5	540	110	330	120	210	140	140	180
CBS 960 2RO	540100		340120		225140		150180	
	One single exponential pulse each 1800 seconds (e-curve)							
	$\tau=5 S$ Max surface [kW] temp.		$\begin{array}{cc} \tau=10 s & \text { Max surface } \\ {[\mathrm{kW}]} & \text { temp. } \end{array}$		$\begin{array}{cc} \tau=20 \mathrm{~S} & \text { Max surface } \\ {[\mathrm{kW}]} & \text { temp. } \end{array}$		$\begin{array}{cc} \tau=40 S & \text { Max surface } \\ {[\mathrm{kW}]} & \text { temp. } \end{array}$	
CBS 210 22R	42	70	29	80	20	95	14	120
CBS 26018 R	71	75	49	90	34	110	24	140
CBS 33013 R	120	85	80	95	55	120	39	150
CBS 400 10R	180	90	115	110	79	130	55	170
CBS 460 6R5	245	100	155	120	100	140	70	180
CBS 5606 RO	310	100	200	120	135	140	92	180
CBS 660 4R5	410	110	260	130	170	150	115	200
CBS 760 3R5	530	110	330	130	215	160	145	200
CBS 860 2R5	650	120	400	140	260	170	175	210
CBS 960 2RO	670	110	420	130	275	160	190	210

The table above shows pulse power ratings for typical resistor sizes/lengths and typical ohmic values
Formulas for e-curve : $\quad p(t)=P_{\max .} \cdot e^{-2 t / \tau} \quad E=\frac{\tau}{2} \cdot P_{\max } \quad \tau=R . C$

Pulse load table

CMQ	One single square pulse each 1800 seconds							
	Duty 5s [kW]	Max surface temp.	Duty 10 s [kW]	Max surface temp.	Duty 20 s [kW]	Max surface temp	Duty 40s [kW]	Max surface temp.
CMQ 210 22R	23	65	16	70	11	85	8	110
CMQ 26018 R	46	75	31	85	21	100	15	130
CMQ 33013 R	71	75	47	90	32	110	23	140
CMQ 40010 R	120	85	75	100	49	120	34	150
CMQ 460 6R5	150	90	93	100	61	120	42	160
CMQ 560 6RO	210	100	130	110	83	130	57	160
CMQ 660 4R5	260	100	160	120	100	140	69	170
CMQ 760 3R5	350	110	210	120	130	150	88	180
CMQ 860 2R5	350	100	215	120	140	140	95	180
CMQ 960 2RO	460	120	275	130	175	150	115	190
	One single triangle pulse each 1800 seconds							
	Duty 5s Max surface [kW] temp.		Duty 10s Max surface [kW] temp.		Duty 20s Max sur[kW] face temp		Duty $40 s$ [kW] Max surface temp.	
CMQ 210 22R	50	65	34	75	23	85	17	110
CMQ 26018 R	100	75	66	85	44	100	31	130
CMQ 33013 R	150	80	99	90	67	110	47	140
CMQ 400 10R	250	90	160	100	105	120	71	160
CMQ 460 6R5	320	95	200	110	130	130	87	160
CMQ 560 6RO	450	100	275	120	175	140	120	170
CMQ 660 4R5	560	100	340	120	215	140	145	180
CMQ 760 3R5	740	120	450	130	280	150	185	190
CMQ 860 2R5	750	110	460	120	295	150	200	180
CMQ 960 2RO	970	120	590	140	370	160	245	200
	One single exponential pulse each 1800 seconds (e-curve)							
	$\begin{array}{cc} \tau=5 s & \text { Max surface } \\ {[\mathrm{kW}]} & \text { temp. } \\ \hline \end{array}$		$\begin{array}{cc} \tau=10 S & \text { Max surface } \\ {[\mathrm{kW}]} & \text { temp. } \\ \hline \end{array}$		$\begin{gathered} \tau=20 \text { Max sur- } \\ {[\mathrm{kW}] \quad \text { face temp. }} \end{gathered}$		$\begin{array}{cc} \tau=40 s & \text { Max surface } \\ {[\mathrm{kW}]} & \text { temp. } \\ \hline \end{array}$	
CMQ 210 22R	62	70	42		29	100	21	120
CMQ 26018 R	125	85	81	100	55	120	38	150
CMQ 33013 R	185	90	125	100	83	130	58	160
CMQ 40010 R	310	100	195	120	130	140	87	180
CMQ 460 6R5	390	110	245	120	160	150	110	190
CMQ 560 6RO	540	120	340	130	220	160	145	200
CMQ 660 4R5	680	120	420	140	265	170	180	210
CMQ 760 3R5	900	130	550	150	350	180	225	220
CMQ 860 2R5	910	120	560	140	370	170	245	220
CMQ 960 2RO	1200	140	$720 \quad 160$		450	190	300	240

HVBS	One single square pulse each 1800 seconds				
	Duty 5s [KW]	Max surface temp.	Duty 10s Max surface [kW] temp.	Duty 20 s Max surface [kW] temp.	Duty 40s Max surface [kW] temp.
HVBS 300 15R	22.4	60	15.4	1175	890
HVBS 370 12R	41.3	65	27.8 75	19.3 85	13.9110
HVBS 440 10R	66	70	43.6 80	29.395	20.6120
HVBS 5208 RO	81	75	$54 \quad 85$	37.1100	26.6130
HVBS 620 6RO	120	80	$77 \quad 90$	$51 \quad 110$	35.8130
HVBS 7205 RO	155	80	9890	65110	$45.1 \quad 140$
HVBS 820 4RO	185	85	11595	$77 \quad 110$	53140
HVBS 9203 25	270	95	165110	105120	69150
HVBS 1000 3R0	300	95	$180 \quad 110$	115130	$77 \quad 150$
	One single triangle pulse each 1800 seconds				
	Duty 5s [kW]	Max surface temp.	Duty 10 s Max surface [kW] temp.	Duty 20 s Max surface [kW] temp.	Duty 40s Max surface [kW] temp.
HVBS 300 15R	48	60	3365	$23 \quad 75$	1695
HVBS 370 12R	88	65	$59 \quad 75$	4190	29110
HVBS 440 10R	145	75	9385	62100	43120
HVBS 5208 RO	175	75	11585	$77 \quad 100$	54130
HVBS 620 6RO	255	80	16590	110110	74140
HVBS 720 5RO	330	85	21095	135110	94140
HVBS 820 4RO	400	85	25095	160120	110140
HVBS 9203 25	570	100	350110	220130	145160
HVBS 1000 3RO	640	100	390110	245130	$160 \quad 160$
	One single exponential pulse each 1800 seconds (e-curve)				
	$\begin{gathered} \tau=5 \mathrm{~S} \\ {[\mathrm{~kW}]} \end{gathered}$	Max surface temp.	$\tau=10 s$ Max surface [kW] temp.	$\tau=20$ S Max surface [kW] temp.	$\tau=405$ Max surface [KW] temp.
HVBS 300 15R	59	65	4170	2885	20100
HVBS 370 12R	110	75	73 85	$50 \quad 100$	35120
HVBS 440 10R	175	85	11595	76120	52140
HVBS 5208 RO	215	85	140100	95120	67150
HVBS 6206 RO	310	90	200100	135120	$91 \quad 160$
HVBS 720 5RO	400	95	255110	$170 \quad 130$	115160
HVBS 8204 RO	480	95	300110	200130	135170
HVBS 920 3R5	690	110	420120	270150	$180 \quad 180$
HVBS 1000 3RO	770	110	$470 \quad 130$	300150	200190

Pulse load table

CVS	One single square pulse each 1800 seconds					
0	Duty 5s [KW]	Max surface temp.	Duty 10s Max surface [kW] temp.	Duty 20s Max surface [kW] temp.	Duty 40s [kW]	Max surface temp.
CVS 40010 R	135	80	8390	52100	35	120
CVS 460 6R5	190	90	11595	71110	46	130
CVS 560 6R0	265	95	155100	97120	63	140
CVS 660 4R5	340	100	200110	120120	79	150
CVS 760 3R5	440	100	255120	155130	99	160
CVS 860 2R5	500	110	290120	175130	115	160
CVS 960 2RO	510	100	300110	180130	120	160
One single triangle pulse each 1800 seconds						
	Duty 5s [kW]	Max surface temp.	Duty 10s Max surface [kW] temp.	Duty 20s Max surface [kW] temp.	Duty 40s [kW]	Max surface temp.
CVS 40010 R	290	85	18095	110110	74	130
CVS 460 6R5	410	90	245100	150120	98	140
CVS 560 6RO	560	95	330110	205120	130	150
CVS 660 4R5	720	100	420110	260130	165	150
CVS 7603 R 5	930	110	550120	330140	210	160
CVS 860 2R5	1050	110	620120	370140	235	160
CVS 960 2RO	1050	100	630120	390130	250	160
	One single exponential pulse each 1800 seconds (e-curve)					
	$\begin{array}{cc} \tau=5 S & \text { Max surface } \\ {[\mathrm{kW}]} & \text { temp. } \\ \hline \end{array}$		$\tau=10$ s Max surface [kW] temp.	$\tau=20 s$ Max surface $[\mathrm{kW}]$ temp.	$\begin{gathered} \tau=40 S \\ {[\mathrm{~kW}]} \end{gathered}$	Max surface temp.
CVS 40010 R	350	95	220100	140120	92	150
CVS 460 6R5	490	100	295120	185130	120	160
CVS 560 6RO	670	110	410120	250140	160	170
CVS 660 4R5	860	110	510130	320150	205	180
CVS 7603 R 5	1100	120	$660 \quad 140$	400160	255	190
CVS 860 2R5	1250	120	740140	460160	295	200
CVS 960 2RO	1250	120	$760 \quad 130$	$480 \quad 150$	310	190

The table above shows pulse power ratings for typical resistor sizes/lengths and typical Ohm values.

Pulse load

The ability to withstand pulse-loads varies according to resistor size, length and diameter of the internal resistor wire. As such, it is impossible to create standard graphs that would apply to all customer applications. In some cases, the load-profile will be the combination of a square and a triangular pulse, such as is the case with Low Voltage Ride Through (LVRT) and Emergency Brake situations, as encountered in the Wind Power industry.

On request, Danotherm performs simulations based on the actual application and for guidance, has produced tables for various load-profiles for resistors with standard wire. The above table shown is based on a resistor with indicated ohmic value and standard wire thickness. Depending on the application, resistor construction can be adapted to optimally match the application. In the tables above, the peak powers of single rectangular, triangular and exponential pulses durations of 5 to 40 seconds.

Ingress Protection

The Ingress Protection rating (IP) value depends on the resistor and on the connection style. The basic IP rating for resistors is IP 50 but by the addition of gaskets, they can be increased to IP 54 or IP 65 which is also possible for resistors with flying leads. For resistors with connection box type B , the maximal IP value is 65 . Resistors with connection boxes D and G have an IP 21 rating when mounted vertically and IP 20 when mounted horizontally

IP values and their type-tests are well defined; for instance "IP 65" means dust cannot penetrate the box or if dust occurs internally, it will not influence the electrical properties. It should be able to withstand water jets from any direction with a certain pressure during 3 minutes; however, it does not mean that it can withstand continuous rain. If the resistor is used outdoors, then it should be protected against direct rain.

IP 65 rated resistors can be cleaned with a high pressure hose, but this can only be done when the resistor has cooled down to the ambient temperature, otherwise the water will cool the housing causing a partial vacuum inside, drawing in water.

Danotherm offers standard solutions for one to four cases combined into one compact configuration with pulse-withstand capability of $1 \mathrm{MW}(5 \mathrm{MJ})$ and also OEM versions with a maximum of 20 resistors. Depending on the electrical connection, the IP class ranges from IP 00 to IP 65. Connections can be via a terminal box, DIN-rail terminals or cable lugs. These resistor types are also offered in high voltage versions and with higher ohmic values.

The salient features of Alpha resistors are that they have:

- Small dimensions
- Cool surfaces in operation
- High pulse-load capabilities

תNIBE

- High vibration capabilities
- No external electrically-live parts
- High IP classes
- Fail-safe capabilities (on request)
- low noise levels.

Danotherm has developed a thermal simulation method by which it is possible to optimize a resistor to a specified application. This gives following benefits:

- \quad Short and fast engineering time, saving engineering costs
- Individual thermic model simulations can be done by Danotherm or handled by the customer. Individual thermic models are available on request.
- Simulation software for electrical circuits can be used for thermal simulations (PSpice, Matlab, Plecs or any other)
- For more complex loads a data file (like csv) can be used for input
- Optimizing the design, reducing overall size and costs
- \quad Proof of capability is given without even building and testing samples

Measured on site: Brake Power saved in .cvs file.
Other possibilities could be a description of a typical or worst case brake pulse and a repeat cycle.

Simulation made by Danotherm
Results of temperature simulation of specified load in a suggested resistor type.

Thermal Model of ALPHA Resistor

Danotherm resistors are used as:

- Pre-charge for DC-link (super) capacitors
- Pre-magnetization of power transformers
- Brake resistors for industrial drive systems
- Emergency stops in (gas) turbines

Danotherm resistors are used in:

- Elevators
- Escalators
- Cranes
- Vessels
- Wind turbines
- (Trolley)busses
- Trams / Metros / Trains (auxiliary circuits)
- Conveyer belts
- Transformers
- Turbines
- Excavation machines

Danotherm supports your request. The very start is your specification of the application, the load and environmental conditions. Ideally, a powertime graph is presented which forms the basis of the thermal simulation. If such graph is not available, the electrical circuit of the application is build in the simulation software. It is also possible to use a data file as input for the load. Such file can be build by measurements on the site or they come from another simulation software program.

The next step is to feed the generated power losses into the thermal model. Each resistor which its physical properties gets its own, unique, thermal model. With the simulation the temperatures inside the resistor and of the outside housing surface, are simulated. Here, the maximum temperature values are observed and at the same time care is taken not to over dimension the resistor.

When the type and internal construction of the resistor is defined, the resistor will be further tailored to the customers needs. Connection boxes, connection cable sizes, cable glands, IP ratings, mounting brackets, metal surface treatment, auxiliary circuits, such as Pt100 sensors and thermal switches, are all considered.

Finally, packing and shipping is an important topic. The resistors should be safely packed to prevent damage during transport and at the same time the costs for shipping and packing must be considered. Together with our customers the best option is chosen.

Overview of the ALPHA resistor family (IP00-IP65)

Power: $60-410 \mathrm{~W}$	Power: $85 \mathrm{~W}-1.7 \mathrm{~kW}$	Power: $410 \mathrm{~W}-12 \mathrm{~kW}$	Power: $445 \mathrm{~W}-15 \mathrm{~kW}$	Power: $860 \mathrm{~W}-25 \mathrm{~kW}$	
	$9-150 \mathrm{~kJ} @ 5 \mathrm{~s}$	$25-550 \mathrm{~kJ} @ 5 \mathrm{~s}$	$80 \mathrm{~kJ}-2.5 \mathrm{MJ} @ 5 \mathrm{~s}$	$6.4 \mathrm{~kJ}-1.1 \mathrm{MJ} @ 5 \mathrm{~s}$	
- Applications	Charge / Discharge	High Pulse load	High Pulse load	High Pulse load	
Brake	Brake	Brake	Brake	Short recovery time	
Filter	Filter	Filter	Medium voltage	Filter	
	Charge / Discharge	Charge / Discharge	Charge / Discharge	High Pulse load	

Other resistor types from Danotherm (IP00-IP66)

Multi purpurse	Outdoor \& Marine	Filter	Medium \& High voltage	Filter \& load
Power: $100 \mathrm{~W}-5 \mathrm{~kW}$	Power: $1-500 \mathrm{~kW}$	Power: $4-200 \mathrm{~kW}$	Power: 500 W ->	Power: $5 \mathrm{~kW}-1 \mathrm{MW}$
Ceramic wirewound	Steel tube	Wirewound	Steel grid	Steel tube

CMQ-H 400 CH(T) 281 22R KT

Thermal drift; standard $\mathrm{T}=100 \mathrm{ppm}$, Tolerance; standard $\mathrm{K}= \pm 10 \%$
Ohm value (Example $2 \mathrm{R} 2=2.2 \Omega_{1} / 22 \mathrm{R}=22 \Omega$)
Number of case style housings (1, 2, 3 or 4)
Thermal switch temp; $5=130^{\circ} \mathrm{C} / 6=160^{\circ} \mathrm{C} / 7=180^{\circ} \mathrm{C} / 8=200^{\circ} \mathrm{C}$
$0=$ cable connection, $2=$ connection box type
$\mathrm{T}=$ Thermal switch, option, (normally closed)
Connection style; $\mathrm{C}=$ cable $/ \mathrm{B}=\mathrm{IP} 65$ box $/ \mathrm{K}=\mathrm{DIN}$ rail IP00 Length of resistor housing in mm
$\mathrm{H}=$ horizontal mounting feet $/ \mathrm{V}=\mathrm{vertical}$ mounting feet
Housing case style; CBS / CMQ / HVBS / CVS

Danotherm Electric A/S
Naesbyvej 20
DK-2610 Roedovre
Denmark
CVR 10126061

DAN EN 16.5043.R1
22MAY2017

DANOTHERM

CBT-H / CBT-V

- Brake resistors

- General-purpose applications; High pulse load and High average load
- Compact Construction; small dimensions
- Fully insulated; no external live parts
- High IP Classes
- Low thermal drift. 100ppm
- Fail Safe capabilities on request
- Low noise
- Thermal models for all types available on request
- Resistor components are UL approved

CBT $1 / 2 / 3$ / and 4 housing cases

Pn [W] @ $40^{\circ} \mathrm{C}$ According UL508							
	1 body	max case temp $\left[{ }^{\circ} \mathrm{C}\right]$	$\begin{gathered} R[\Omega] \\ \min -\max \\ \pm 10 \% \end{gathered}$	Pn [W] @ $40^{\circ} \mathrm{C}$			
$\mathrm{CBT}-\mathrm{BH}(\mathrm{T})-\mathrm{XXX}$	Pn [W] @ $40^{\circ} \mathrm{C}$ ACcording UL508			1 case	2 cases	3 cases	4 cases
TS: Thermal switch	no TS			TS $200{ }^{\circ} \mathrm{C}$	no TS , max case temp. $250^{\circ} \mathrm{C}$		
CBT 180	455	270	0.04-13	410			
CBT 210	585	270	0.05-2000	530			
CBT 260	830	280	0.07-2000	750			
CBT 330	1350	280	0.09-2000	1225			
CBT 400	1650	290	0.11-2000	1495	2200	3000	4000
CBT 460	1900	300	0.14-2000	1725	2800	4200	5600
CBT 560	2310	310	0.18-110	2095	3500	5200	6900
CBT 660	2720	320	0.22-130	2470	4200	6300	8400
CBT 760	3200	330	0.27-150	2905	5000	7200	9600
CBT 860	3640	340	0.31-180	3305	5500	8000	10800
CBT 960	4070	350	0.35-220	3695	6900	9000	12000

Construction and properties

- Compact dimensions
- Nominal power range from $455 \mathrm{~W}-4070 \mathrm{~W}$
- Energy levels from $25 \mathrm{~kJ}-550 \mathrm{~kJ}$ per case housing (5 s duty, 120 s cycle), depending on ohmic value
- Aluminium case housing for high IP rating
- IP50-IP65
- Internal ceramic supported wirewound spirals for lower ohmic values
- Internal mica supported wirewound elements for higher ohmic values
- Nickel-Chrome 8020 alloy for low thermal drift
- Mica insulated for high dielectric strength
- $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2} filled for high thermal capacity/ high power overload capability
- Low surface temperature
- Low noise level
- High vibration withstand capability
- Thermal relief expansion mounting feet
- Optional thermal switch or PT100 element for thermal protection
- Cable (AWG 14-AWG4) or box connection up to $50 \mathrm{~mm}^{2}$
- Multiple case housings (from 2-4 housings)
- Customized to your needs and application (OEM versions available)
- For UL approval, consult Danotherm

Temperature Coefficient		$100 \mathrm{ppm} / \mathrm{K}$
Dielectric strength		3500 VAC @ 1 minute
Isolation Resistance:		> 20 M s / case housing
Overload:@ 1 sec pulse / hour		40-120 \times (depending on resistor)
Overload:@ 5 sec pulse / hour		10-27 \times (depending on resistor)
Environmental:		$-40^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
De-rating cable version		Linear: $40^{\circ} \mathrm{C}=$ Pn to $70^{\circ} \mathrm{C}=0.85{ }^{*} \mathrm{Pn}$
De-rating TW $200^{\circ} \mathrm{C}$ version		Linear: $40^{\circ} \mathrm{C}=\mathrm{Pn}$ to $70^{\circ} \mathrm{C}=0.65{ }^{*} \mathrm{Pn}$
De-rating vertical mounting		no de-rating
De-rating horizontal mounting		0.8 * Pn
De-rating at high altitudes	1000 m	no de-rating
	1500 m	0.94 * Pn
	3000 m	0.82 * Pn
Mounting instructions		It is recommended to keep a distance of 200 mm to the nearest object to prevent heating of neighbouring component.
		If two or more brake resistors are mounted next to each other the distance between these should be 400 mm . If this is less then the nominal power needs to be de-rated
Cooling		The nominal power of the resistors refers to cooling conditions with Free Natural Air Cooling.
Vibration		Acc. To EN 60068-2-6 frequency range $1-100 \mathrm{~Hz}$ Acceleration / Amplitude
	$1-13 \mathrm{~Hz}$	$\pm 1 \mathrm{~mm}$
	$13-100 \mathrm{~Hz}$	@ $\pm 0.7 \mathrm{G}$
Corrosive resistance		Acc. IEC 60721-3-3/3K3 (C2 medium) 200 hours cyclic salt mist IEC 60068-2-52
Connection recommendations		To minimize EMC interference screened cables are recommended. in particular with any PWM brake pattern.
Resistance tolerance		$\pm 10 \%$ (optional 5\%)
Working voltage	cable	UL: 1000 VAC . IEC: $1000 \mathrm{VAC} / 1400 \mathrm{VDC}$
	conn. Box	UL: 600VAC. IEC: 690VAC / 1100VDC
Time constant for heating up		1000-3000s
Thermal switch (optional)	Thermal switch	130/160/180/200 ${ }^{\circ} \mathrm{C} .2 \mathrm{~A} .250$ VAC NC
Minimum voltage		2 V
Minimum current		10 mA
Rated current / voltage		2.5A @ 250 VAC $\cos \phi=1$
Dielectric voltage		2000VAC (3500VAC between TS and R)
Temperature requirements on cables	IP 21	$80^{\circ} \mathrm{C}$
	IP 65	$90^{\circ} \mathrm{C}$

Mechanical drawings
Cable connection IP50 type CBT-H .C.. 1

P_{n}	$\begin{aligned} & \text { Duty }^{+} \\ & 5 / 120 \end{aligned}$	Horizontal type CBT -	$\begin{gathered} \mathrm{L} \pm \\ 2 \end{gathered}$	$\begin{array}{r} \mathrm{L} 1 \\ \pm 2 \end{array}$	$\begin{aligned} & \text { Weight } \\ & (\mathrm{SiO} 2) \end{aligned}$	Resistance Range
kW	kW	IP50	mm	mm	kg	Ω
0.45	6	-H $180 \mathrm{C}(\mathrm{H})(\mathrm{T}) \mathrm{OX} 1$	180	70	3.1	0.04-13
0.58	10.1	-H $210 \mathrm{C}(\mathrm{H})(\mathrm{T})$ OX1	210	110	3.6	0.05-2000
0.83	17.9	-H $260 \mathrm{C}(\mathrm{H})(\mathrm{T})$ OX1	260	160	4.5	0.07-2000
1.35	27.5	-H $330 \mathrm{C}(\mathrm{H})(\mathrm{T})$ OX1	330	230	5.9	0.09-2000
1.65	37	-H $400 \mathrm{C}(\mathrm{H})(\mathrm{T}) \mathrm{OX}$	400	300	7.3	0.11-2000
1.9	48	-H $460 \mathrm{C}(\mathrm{H})(\mathrm{T})$ OX1	460	360	8.5	0.14-2000
2.3	58	-H $560 \mathrm{C}(\mathrm{H})(\mathrm{T}) \mathrm{OX} 1$	560	460	10	0.18-110
2.7	69	-H $660 \mathrm{C}(\mathrm{H})(\mathrm{T})$ OX1	660	560	12	0.22-130
3.2	82	-H $760 \mathrm{C}(\mathrm{H})(\mathrm{T})$ OX1	760	660	13.8	0.27-150
3.6	95	-H $860 \mathrm{C}(\mathrm{H})(\mathrm{T})$ OX1	860	760	16	0.31-180
4.1	111	-H $960 \mathrm{C}(\mathrm{H})(\mathrm{T})$ 0X1	960	860	17.8	0.35-220

Cable connection IP50 type CBT-V..C.. 1

P_{n}	Duty $5 / 120$	Vertical type $\mathrm{CBT}-$	$\mathrm{L} \pm 2$	$\mathrm{L} 1 \pm$ 2	Weight (si02)	Resistance Range
kW	kW	IP 50	mm	mm	kg	Ω
0.45	6	$-\mathrm{V} 180 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	180	70	3.1	$0.04-13$
0.58	10.1	$-\mathrm{V} 210 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	210	110	3.6	$0.05-2000$
0.83	17.9	$-\mathrm{V} 260 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	260	160	4.5	$0.07-2000$
1.35	27.5	$-\mathrm{V} 330 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	330	230	5.9	$0.09-2000$
1.65	37	$-\mathrm{V} 400 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	400	300	7.3	$0.11-2000$
1.9	48	$-\mathrm{V} 460 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	460	360	8.5	$0.14-2000$
2.3	58	$-\mathrm{V} 560 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	560	460	10	$0.18-110$
2.7	69	$-\mathrm{V} 660 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	660	560	12	$0.22-130$
3.2	82	$-\mathrm{V} 760 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	760	660	13.8	$0.27-150$
3.6	95	$-\mathrm{V} 860 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	860	760	16	$0.31-180$
4.1	111	$-\mathrm{V} 960 \mathrm{C}(\mathrm{H})(\mathrm{T}) 0 \times 1$	960	860	17.8	$0.35-220$

Box connection type IP20/IP21 CBT-H..D. 2.1

P_{n}	Duty* $5 / 120$	Type $\mathrm{CBT}-$	$\mathrm{L} \pm 2$	$\mathrm{L} 1 \pm$ 2	Weight (SiO2)	Resistance Range
kW	kW	$\mathrm{IP} 20 / \mathrm{P} 21$	mm	mm	kg	Ω
0.41	6	$-\mathrm{H} 180 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	180	70	3.9	$0.04-13$
0.53	10.1	$-\mathrm{H} 210 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \mathrm{X} 1$	210	110	4.2	$0.05-2000$
0.75	17.9	$-\mathrm{H} 260 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	260	160	5.1	$0.07-2000$
1.22	27.5	$-\mathrm{H} 330 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	330	230	6.7	$0.09-2000$
1.5	37	$-\mathrm{H} 400 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	400	300	8.2	$0.11-2000$
1.7	48	$-\mathrm{H} 460 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	460	360	9.2	$0.14-2000$
2.1	58	$-\mathrm{H} 560 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	560	460	11	$0.18-110$
2.5	69	$-\mathrm{H} 660 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	660	560	12.8	$0.22-130$
2.9	82	$-\mathrm{H} 760 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	760	660	14.6	$0.27-150$
3.3	95	$-\mathrm{H} 860 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	860	760	16.8	$0.31-180$
3.7	111	$-\mathrm{H} 960 \mathrm{D}(\mathrm{H})(\mathrm{T}) 2 \times 1$	960	860	18.6	$0.35-220$

Box connection IP20 / IP21 type CBT-H ..G2.1

	P_{n}	$\begin{gathered} \hline \text { Duty* } \\ 5 / 120 \end{gathered}$	$\begin{aligned} & \text { Type } \\ & \text { CBT- } \end{aligned}$	$L \pm 2$	$\begin{array}{r} \mathrm{L} 1 \pm \\ 2 \end{array}$	$\begin{aligned} & \text { Weight } \\ & \left(\mathrm{SiO}_{2}\right) \end{aligned}$	Resistance Range
	kW	kW	IP20/IP21	mm	mm	kg	Ω
边	0.45	6	-H $180 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	180	70	3.9	0.04-13
L+197	0.58	10.1	-H $210 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	210	110	4.2	0.05-2000
	0.83	17.9	-H $260 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	260	160	5.1	0.07-2000
\xrightarrow{L}	1.35	27.5	-H $330 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	330	230	6.7	0.09-2000
	1.65	37	-H $400 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	400	300	8.2	0.11-2000
	1.9	48	-H $460 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	460	360	9.2	0.14-2000
	2.3	58	-H $560 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	560	460	11	0.18-110
	2.7	69	-H $660 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	660	560	12.8	0.22-130
	3.2	82	-H $760 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	760	660	14.6	0.27-150
	3.6	95	-H $860 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	860	760	16.8	0.31-180
	4.1	111	-H $960 \mathrm{G}(\mathrm{H})(\mathrm{T}) 2 \times 1$	960	860	18.6	0.35-220

Box connection IP20 / IP21 type CBT-V ..G2.2

Box connection IP20 / IP21 type CBT-V .G2.3

Mechanical drawings
Box connection IP54 / IP65 type CBT-H ..B2.1

P_{n}	$\begin{array}{\|c\|} \hline \text { Pulse } \\ 5 / 120 \end{array}$	$\begin{aligned} & \text { Type } \\ & \text { CBT- } \end{aligned}$	$\mathrm{L} \pm 2$	$\begin{array}{\|c\|} \mathrm{L} 1 \pm \\ 2 \end{array}$	Weight (SiO2)	Resistance Range		
kW	kW	IP54/IP65	mm	mm	kg	Ω	00 wit	
0.41	6	-H $180 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	180	70	3.9	0.04-13		
0.53	10.1	-H $210 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	210	110	4.2	0.05-2000		
0.75	17.9	-H $260 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	260	160	5.1	0.07-2000		
1.2	27.5	-H $330 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	330	230	6.7	0.09-2000		
1.4	37	-H $400 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	400	300	8.2	0.11-2000	50.	
1.7	48	-H $460 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	460	360	9.2	0.14-2000		
2.0	58	-H $560 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	560	460	11	0.18-110	+	\rightarrow
2.5	69	-H $660 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	660	560	12.8	0.22-130		
2.9	82	-H $760 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	760	660	14.6	0.27-150		
3.3	95	-H 860 B(H)(T) 2×1	860	760	16.8	0.31-180		
3.7	111	-H $960 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 1$	960	860	18.6	0.35-220		

Box connection IP 54 / IP65 type CBT-V ..B2.2

Box connection type IP 54 / IP65 CBT-V ..B2.3

P_{n}	$\begin{gathered} \hline \text { Pulse } \\ 5 / 120 \end{gathered}$	Type CBT-	$\mathrm{L} \pm 2$	$\begin{gathered} \mathrm{L} 1 \pm \\ 2 \end{gathered}$	Weight (SiO2)	Resistance Range		
kW	kW	IP54/IP65	mm	mm	kg	Ω		
27	70	-V $400 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 3$	400	300	25.5	0.04-1000		
3.8	90	-V $460 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 3$	460	360	29	0.05-1000	0	
4.7	110	-V $560 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 3$	560	460	33.5	0.06-35		
5.7	130	-V $660 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 3$	660	560	39	0.07-45	-	
6.5	150	-V $760 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 3$	760	660	44.5	0.09-50		
7.3	170	-V $860 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 3$	860	760	51	0.10-60		
8.2	195	-V $960 \mathrm{~B}(\mathrm{H})(\mathrm{T}) 2 \times 3$	960	860	57	0.12-70		

Box connection type IP54 / IP65 CBT-V .,B2.4

connection boxes	IP rating	cable gland	clamping range	braid diameter (min)	elec. connection
			$[\mathrm{mm}]$	$[\mathrm{mm}]$	$\left[\mathrm{mm}^{2}\right]$
B-box (single housing)	IP65	M25	$9-16.6$	7.5	$0.75-10$
D-box	IP21	M25	$9-16.6$	7.5	$0.75-10$
G-box	IP21	M40	$19-28$	15	$2.5-50$
B-box (multiple housings)	IP65	M32	$11-21$	9	$2.5-50$
B-box (multiple housings)	IP65	M40	$19-28$	15	$2.5-50$
thermal switch (optional)	-	M12	$3-7$	-	$0.5-4$

Other cable gland sizes on request

B-box
Single-body

D-box

B-box
Multiple-housings

G-box

Pulse load table

CBT-H CX(${ }^{\text {(}}$)	Square pulse each 120 seconds, ambient temp. $=40^{\circ} \mathrm{C}$									
	duty 1 second [kW]	$\begin{gathered} \operatorname{Max} \\ \text { temp. } \\ {\left[{ }^{\circ} \mathrm{C} \mathrm{C} .\right.} \end{gathered}$	duty 5 second [KW]	$\begin{gathered} \text { Max } \\ \text { temp. } \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	duty 10 second [KW]		duty 20 second [kW]	Max temp $\left[{ }^{\circ} \mathrm{C}\right]$	duty 40 second [kW]	Max temp $\left[{ }^{\circ} \mathrm{C}\right]$
CBT-H 180 15R	18.4	110	5.1	140	3	160	1.9	180	1.1	220
CBT-H 210 100R	24.7	110	6.1	130	3.8	150	2.5	190	1.7	240
CBT-H 260 60R	44	130	10.7	150	6.4	180	4	210	2.7	270
CBT-H 330 40R	71	140	22	190	13	220	8	260	4.3	280
CBT-H 400 30R	105	160	30	210	18	250	10.7	290	5.4	280
CBT-H 460 20R	128	170	36	220	21	250	12	290	6.2	290
CBT-H 560 15R	190	200	50	250	28	280	15	300	7.6	300
CBT-H 660 14R	257	230	64	270	36	300	18	300	9.2	310
CBT-H 76012 R	315	240	78	290	43	310	21.5	310	10.7	310
CBT-H 860 10R	370	250	89	300	50	320	25	320	12.4	320
CBT-H 960 9R0	480	290	110	330	56	330	28	330	14	330
	Triangle pulse each 120 seconds, ambient temp. $=40^{\circ} \mathrm{C}$									
	duty 1 second [kW]	$\begin{gathered} \text { Max } \\ \text { temp. } \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{aligned} & \text { duty } 5 \\ & \text { second } \\ & {[\mathrm{kW}]} \end{aligned}$	$\begin{gathered} \text { Max } \\ \text { temp. } \\ {\left[\begin{array}{c} \\ {\left[{ }^{\circ} C\right]} \end{array}\right.} \end{gathered}$	duty 10 second [kW]	$\begin{gathered} \text { Max } \\ \text { temp. } \\ {\left[{ }^{[} \subset \mathrm{c}\right.} \end{gathered}$	duty 20 second [KW]	Max temp. [$\left.{ }^{\circ} \mathrm{C}\right]$	duty 40 second [kW]	Max temp. [$\left.{ }^{\circ} \mathrm{C}\right]$
CBT-H 180 15R	39	110	10.7	140	6.3	160	3.8	190	2.3	220
CBT-H 210 100R	50	110	12.7	130	7.7	150	4.9	180	3.2	230
CBT-H 260 60R	90	140	22	160	13	180	8	210	5	250
CBT-H 330 40R	148	140	46	200	27	230	16	260	8.5	280
CBT-H 400 30R	217	160	63	220	37	250	21	280	10.6	280
CBT-H 460 20R	265	170	74	230	44	260	25	290	12.3	290
CBT-H 560 15R	390	200	103	260	58	290	30	300	15	300
CBT-H 660 14R	530	230	134	280	73	310	37	310	18	310
CBT-H 76012 R	645	240	160	290	86	310	43	310	22	310
CBT-H 860 10R	578	260	183	300	98	320	50	320	25	320
CBT-H 960 9R0	983	290	226	330	113	330	57	330	28	330

The table above shows pulse power ratings for typical resistor sizes/lengths and typical ohm values.

Pulse load

The ability to withstand pulse-loads varies according to resistor size, length and diameter of the internal resistor wire. As such, it is impossible to create standard graphs that would apply to all customer applications. In some cases, the load-profile will be the combination of a square and a triangular pulse, such as is the case with Low Voltage Ride Through (LVRT) and Emergency Brake situations, as encountered in the Wind Power industry.

On request, Danotherm performs simulations based on the actual application and for guidance, has produced tables for various load-profiles for resistors with standard wire. The above table shown is based on a resistor with indicated ohm value and standard wire thickness. Depending on the application, resistor construction can be adapted to optimally match the application. In the tables above, the peak powers of trains of rectangular and triangular pulses of 120 second periods are shown for durations of 1 to 40 seconds.

Ingress Protection

The Ingress Protection rating (IP) value depends on the resistor and on the connection style. The basic IP rating for resistors is IP 50 but by the addition of gaskets, they can be increased to IP 54 or IP 65 which is also possible for resistors with flying leads. For resistors with connection box type B, the maximal IP value is 65 . Resistors with connection boxes D and G have an IP 21 rating when mounted vertically and IP 20 when mounted horizontally.

IP values and their type-tests are well defined; for instance "IP 65" means dust cannot penetrate the box or if dust occurs internally, it will not influence the electrical properties. It should be able to withstand water jets from any direction with a certain pressure during 3 minutes; however, it does not mean that it can withstand continuous rain. If the resistor is used outdoors, then it should be protected against direct rain.

IP 65 rated resistors can be cleaned with a high pressure hose, but this can only be done when the resistor has cooled down to the ambient temperature, otherwise the water will cool the housing causing a partial vacuum inside, drawing in water.

Danotherm offers standard solutions for one to four cases combined into one compact configuration with pulsewithstand capability of $1 \mathrm{MW}(5 \mathrm{MJ})$ and also OEM versions with a maximum of 20 resistors. Depending on the electrical connection, the IP class ranges from IP 00 to IP 65. Connections can be via a terminal box, DIN-rail terminals or cable lugs. These resistor types are also offered in high voltage versions and with higher ohmic values.

The salient features of Alpha resistors are that they have:

- Small dimensions
- Cool surfaces in operation
- High pulse-load capabilities
- High vibration capabilities

תNIBE

- No external electrically-live parts
- High IP classes
- Fail-safe capabilities (on request)

Danotherm Electric A/S is a NIBE company

- low noise levels.

Danotherm has developed a thermal simulation method by which it is possible to optimize a resistor to a specified application. This gives following benefits

- Short and fast engineering time, saving engineering costs
- Simulation software for electrical circuits can be used for thermal simulations (PSpice, Matlab, Plecs or any other)
- \quad Simulations can be done by the customer or if requested by Danotherm
- \quad Simulation is based on customers application, any electrical circuit that can be simulated can be used
- For more complex loads a data file (like csv) can be used for input
- Optimizing the design, reducing overall size and costs
- Proof of capability is given without even building and testing samples

Measured on site: Brake Power stored in .cvs file.
Other possibilities could be a description of a typical or worst case brake pulse and a repeat cycle.

Simulation made by Danotherm
Results of temperature simulation of specified load in a suggested resistor type.

Danotherm resistors are used as:

- Pre-charge for DC-link (super) capacitors
- Pre-magnetization of power transformers
- Brake resistors for industrial drive systems
- Emergency stops in (gas) turbines

Danotherm resistors are used in:

- Elevators
- Escalators
- Cranes
- Vessels
- Wind turbines
- (Trolly)busses
- Trams / Metros / Trains (auxiliary circuits)
- Conveyer belts
- Transformers
- Turbines
- Excavation machines

Danotherm supports your request. The very start is your specification of the application, the load and environmental conditions. Ideally, a powertime graph is presented which forms the basis of the thermal simulation. If such graph is not available, the electrical circuit of the application is build in the simulation software. It is also possible to use a data file as input for the load. Such file can be build by measurements on the site or they come from another simulation software program.

The next step is to feed the generated power losses into the thermal model. Each resistor which its physical properties has its own, unique, thermal model. With the simulation the temperatures inside the resistor and of the outside housing surface, are simulated. Here, the maximum temperature values are observed and at the same time care is taken not to over dimension the resistor.

When the type and internal construction of the resistor is defined, the resistor will be further tailored to the customers needs. Connection boxes, connection cable sizes, cable glands, IP ratings, mounting brackets, metal surface treatment, auxiliary circuits, such as PT100 sensors and thermal switches, are all considered.

Finally, packing and shipping is an important topic. The resistors should be safely packed to prevent damage during transport and at the same time the costs for shipping and packing must be considered. Together with our customers the best option is chosen.

Overview of the ALPHA resistor family (IP00-IP65)

Power: $60-410 \mathrm{~W}$	Power: $85 \mathrm{~W}-1.7 \mathrm{~kW}$	Power: $410 \mathrm{~W}-12 \mathrm{~kW}$	Power: $445 \mathrm{~W}-15 \mathrm{~kW}$	Power: $860 \mathrm{~W}-25 \mathrm{~kW}$	
	$9-150 \mathrm{~kJ} @ 5 \mathrm{~s}$	$25-550 \mathrm{~kJ} @ 5 \mathrm{~s}$	$80 \mathrm{~kJ}-2.5 \mathrm{MJ} @ 5 \mathrm{~s}$	$6.4 \mathrm{~kJ}-1.1 \mathrm{MJ} @ 5 \mathrm{~s}$	
- Applications	Charge / Discharge	High Pulse load	High Pulse load	High Pulse load	
Brake	Brake	Brake	Shake	Brake	
Filter	Filter	Medium voltage	Filter		
	Charge / Discharge	Charge / Discharge	Charge / Discharge	High Pulse load	

Other resistor types from Danotherm (IP00-IP66)

Multi purpurse	Outdoor \& Marine	Filter	Medium \& High voltage	Filter \& load
Power: $100 \mathrm{~W}-5 \mathrm{~kW}$	Power: $1-500 \mathrm{~kW}$	Power: $4-200 \mathrm{~kW}$	Power: 500 W ->	Power: $5 \mathrm{~kW}-1 \mathrm{MW}$
Ceramic wirewound	Steel tube	Wirewound	Steel grid	Steel tube

```
CBT-H
Thermal drift; standard T=100ppm
Tolerance; standard k=\pm 10%
Tolerance; standard K=\pm 10% 
Ohm value (Example 2R2=2.2\Omega/, 22R=22\Omega)
Thermal switch temp; 5=130
0=cable connection, 2=connection box type
T=Thermal switch (normally closed)
Wire element (TBD by Danotherm)
Connection; C=no box/D=IP20/B=IP65 box
Length of resistor housing in mm
H=horizontal mounting feet / V=vertical mounting feet
```

Danotherm Electric A/S
Naesbyvej 20
DK-2610 Roedovre
Denmark
CVR 10126061

DAN EN 16.5040.R8
26JAN 2018

[^0]: CBR-V $400 \mathrm{CH}(\mathrm{T}) 28122 R$ Last digits > 400: Customer specific version, otherwise

 CBR- $T=T T^{2}$
Ohm value (Example $2 \mathrm{R} 2=2.2 \Omega, / 22 \mathrm{R}=22 \Omega$)
Number of case style housings
Thermal switch temp; $5=130^{\circ} \mathrm{C} / 6=160^{\circ} \mathrm{C} / 7=180^{\circ} \mathrm{C} / 8=200^{\circ} \mathrm{C}$
$0=$ cable connection, $2=$ connection box type
$\mathrm{T}=$ Thermal switch (normally closed) Wire element H/E (TBD by Danotherm) DAN EN 16.5015.R3 Connection; $C=$ no box / D=IP20 / B=IP65 box Length of resistor housing in mm Housing style; CBH / CBV / CBR

[^1]: * optionally in CBS / CMQ / CVS

